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Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.
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Anomalies in

 tensions with SM predictions        

b ! s`¯̀
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( )

charm loop and the nonperturbative contribution is trick to account
theoretical challenge !

puzzles in flavour physics

understanding  the  impact  of  intermediate  contributions,  both  
resonant  and  non  resonant,  is  of paramount importance in order 
to be able to provide reliable and precise SM predictions.
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FIG. 2: Numerically leading contributions to the decay rate of B ! K`` in the high q2-region. (a) and (b) O7 and O9,10 short distance
contributions. These contributions are proportional to the local (short distance) form factors. (c) long distance charm-loop contribution which
in (naive) factorisation is proportional to the same form factor times the charm vacuum polarisation hc(q

2). The charm bubble itself is the full
non-perturbative vacuum polarisation since it is extracted directly from the data.

Oc

1,2 which have sizeable Wilson coefficients.) In this section we employ the (naive)6 factorisation approximation (FA) for
which,

hK|C1Oc

1 + C2Oc

2|Bi|FA / (C1 + C2/3)fB!K

+ (q2)hc(q
2) , (13)

the matrix element factorises into the charm vacuum polarisation hc times the short distance form factor as defined in Eq. (A.7).
This contribution has got the same form factor dependence as C9 and can therefore be absorbed into an effective Wilson coeffi-
cient Ce↵

9 (A.9) and (A.10). The combination C1+C2/3 is known as the “colour suppressed" combination of Wilson coefficients
because of a substantial cancellation of the two Wilson coefficients (c.f. appendix A 3). This point will be addressed when we
discuss the estimate of the O(↵s)-corrections.

B. SM-B ! K`` in factorisation

Our SM prediction with lattice form factors [12] (c.f. appendix A 2 for more details), for the B ! K``-rate are shown in
Fig. 3 against the LHCb data [1, 13]. It is apparent to the eye that the resonance effects, in (naive) factorisation, turn out to have
the wrong sign! Not only that but they also seem more pronounced in the data which will be reflected in the fits to be described
below.

IV. COMBINED FITS TO BESII AND LHCB DATA IN AND BEYOND FACTORISATION

Before addressing the relevant issue of corrections to the SM-FA in section V, we present a series combined fits to the BESII
and LHCb-data. We first describe the fit models before commenting on the results towards the end of the section. The number of
fit parameters and the number of d.o.f., denoted by ⌫, are given in brackets below. We take 78 BESII data points and 39 LHCb
bins, excluding the last bin which has a negative entry, amounting to a total of 117 data points.

a) Normalisation of the rate, (17 = 1⌘B + 16res fit-parameter ⌘B, ⌫ = 117 � 17 � 1 = 99)
In the FA the normalisation of the rate is given by the form factors f+,T (q2). Since the latter are closely related in the
high q2-region by Isgur-Wise relation this amounts effectively to an overall normalisation. To be precise we parameterise
the pre-factor, inserted into (A.1) with ml = 0 for the sake of illustration, as follows

d�

dq2

B!K`
+
`
�

/ ⌘B(|HV |2 + |HA|2) , (14)

where V and A refer to the lepton polarisation.

6 The term naive refers to the fact that in this approximation the scale dependence of the Wilson coefficients Ci is not compensated by the corresponding scale
dependence of the matrix elements, a point to be discussed in the forthcoming section.

QCD picture

mailto:pmagalhaes@cbpf.br
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non local charm contribution to B → Kμμ

QCD parametrization

  

[Lyon-Zwicky] (see also [Brass, Hiller & Nisandzic]): a posteriori 
check of KS approach

●  Requires additional factors to match measurements

●  R ratio cannot correctly reproduce the resonances

Non-local form-factors

Factorization approximation [Krugher-Seghal]

  

[Lyon-Zwicky] (see also [Brass, Hiller & Nisandzic]): a posteriori 
check of KS approach

●  Requires additional factors to match measurements

●  R ratio cannot correctly reproduce the resonances

Non-local form-factors

Factorization approximation [Krugher-Seghal]

non-local form-factors: 

size of non-factorisable corrections in   can be significante  b → scc̄
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FIG. 2: Numerically leading contributions to the decay rate of B ! K`` in the high q2-region. (a) and (b) O7 and O9,10 short distance
contributions. These contributions are proportional to the local (short distance) form factors. (c) long distance charm-loop contribution which
in (naive) factorisation is proportional to the same form factor times the charm vacuum polarisation hc(q

2). The charm bubble itself is the full
non-perturbative vacuum polarisation since it is extracted directly from the data.

Oc

1,2 which have sizeable Wilson coefficients.) In this section we employ the (naive)6 factorisation approximation (FA) for
which,

hK|C1Oc

1 + C2Oc

2|Bi|FA / (C1 + C2/3)fB!K

+ (q2)hc(q
2) , (13)

the matrix element factorises into the charm vacuum polarisation hc times the short distance form factor as defined in Eq. (A.7).
This contribution has got the same form factor dependence as C9 and can therefore be absorbed into an effective Wilson coeffi-
cient Ce↵

9 (A.9) and (A.10). The combination C1+C2/3 is known as the “colour suppressed" combination of Wilson coefficients
because of a substantial cancellation of the two Wilson coefficients (c.f. appendix A 3). This point will be addressed when we
discuss the estimate of the O(↵s)-corrections.

B. SM-B ! K`` in factorisation

Our SM prediction with lattice form factors [12] (c.f. appendix A 2 for more details), for the B ! K``-rate are shown in
Fig. 3 against the LHCb data [1, 13]. It is apparent to the eye that the resonance effects, in (naive) factorisation, turn out to have
the wrong sign! Not only that but they also seem more pronounced in the data which will be reflected in the fits to be described
below.

IV. COMBINED FITS TO BESII AND LHCB DATA IN AND BEYOND FACTORISATION

Before addressing the relevant issue of corrections to the SM-FA in section V, we present a series combined fits to the BESII
and LHCb-data. We first describe the fit models before commenting on the results towards the end of the section. The number of
fit parameters and the number of d.o.f., denoted by ⌫, are given in brackets below. We take 78 BESII data points and 39 LHCb
bins, excluding the last bin which has a negative entry, amounting to a total of 117 data points.

a) Normalisation of the rate, (17 = 1⌘B + 16res fit-parameter ⌘B, ⌫ = 117 � 17 � 1 = 99)
In the FA the normalisation of the rate is given by the form factors f+,T (q2). Since the latter are closely related in the
high q2-region by Isgur-Wise relation this amounts effectively to an overall normalisation. To be precise we parameterise
the pre-factor, inserted into (A.1) with ml = 0 for the sake of illustration, as follows

d�

dq2

B!K`
+
`
�

/ ⌘B(|HV |2 + |HA|2) , (14)

where V and A refer to the lepton polarisation.

6 The term naive refers to the fact that in this approximation the scale dependence of the Wilson coefficients Ci is not compensated by the corresponding scale
dependence of the matrix elements, a point to be discussed in the forthcoming section.

not colour suppressed
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non local charm contribution to B → Kμμ

naive factorization 

charm loops are described by  resonances given by charm 
vacuum polarization     

cc̄
hc(q2)

4

r mr[GeV] �r[MeV] 2s+1LJ

J/ 3.097 0.0934(21) 3S1

 (2S) 3.686 0.337(13) 3S1

 (3370) 3.771 23.3 3D1

 (4040) 4.039 76.2 3S1

 (4160) 4.192 73.5 3D1

 (4415) 4.415 78.5 3S1

TABLE I: JPC = 1�� charmonium resonances. The
first two resonances are narrow and the uncertainties in
the masses are negligible [8]. The last four resonances
are above the DD̄-threshold and as a consequence the
width is much larger. We have taken our central fit values
from table V, where more details on the fit can be found.
The uncertainty in the widths is considerable.

r mr[GeV] �r[MeV]

G(3940) 3.943(21) 52(11)

Y (4008) 4.008(121)
(49) 226(97)

Y (4260) 4.263(5) 108(14)

Y (4360) 4.353(11) 96(42)

TABLE II: JPC = 1�� exotic (non-charmonium) res-
onances currently not yet used in the fit. Relevant com-
ments in the main text.

BESII collaboration fitted the resonance parameters [6] which in turn led to changes in the initial state radiation correction and
results in slightly shifted values of the R-function c.f. Fig.2 [6]. This shift is taken into account in our analysis.

We take the same fit function as BESII with the exception of the continuum background model for which we choose2

Rcon(s) = Ruds + (1 � z)(�Rc + za) , �Rc ⌘ Rudsc � Ruds , (4)

with z ⌘ 4m2
D

/s, Ruds = 2.16, Rudsc = 3.6 and a a fit model parameter. The values Ruds and Rudsc correspond to
R(s1 ⌘ (3.73 GeV)2) and R(s2 ⌘ (4.8 GeV)2) where predictions of perturbative QCD and BESII experimental data are in
impressive agreement.

The transition amplitudes from resonance r to final state f , related to the S-matrix as follows S = 1 + i2T , are modelled by
a Breit-Wigner ansatz with energy dependent width and interference effects

T r!f (s) =
mr

p
�r!e+e��r!f (s)

s � m2
r

+ imr�r(s)
ei�r . (5)

The phase �r is the phase at the momentum of production of the resonance r. The phase due to f does not need to be written
since it cancels out in R(s) on grounds of unitarity of the scattering matrix. Only single resonances with quantum numbers of
the electromagnetic current ( JPC = 1��) contribute. In the relevant interval,

fit-interval: 3.7 GeV 
p

s  5 GeV , (6)

the four 1��-resonances shown in table I are fitted for. The fit parameters are the interference phases �r, the masses mr, the
width of the resonance into e+e� as well as one normalisation factor for the width into the final states of DD̄-type, based
on a model by Eichten et al and experimental data, with appropriate thresholds taken into account. For further details on the
modelling of �r!f (s), which is rather standard throughout the literature, the reader is referred to the BES-paper [6]. The fit
function is given by

Rfit(s) = Rres(s) + Rcon(s) (7)

with Rcon as in (4) and the resonance part as given by

Rres(s) =
9

↵2

X

f

|
X

r

T r!f (s)|2 . (8)

The factor 9/↵2 comes from the normalisation �(e+e� ! µ+µ�) = 4⇡↵2/(3s) where ↵ is the QED fine structure constant.
Since only relative phases are observable the first phase � (3370) ⌘ 0 is set to zero by convention. This amounts to a total

2 The model is chosen such that R(s) ' Rudsc for s above the resonances and the factor (1 � z) is the Källén-function of �
⇤

! DD̄ to the power one and
corresponds to an average power of the various DD̄-final states. We might improve the matching to pQCD for high q

2 in a future version of this work. For
the essential points of our analysis this is not of major importance.

as Breit-Wigner

non-factorizable effects are important (high-   OPE)! q2

not enough to cover the anomaly!

[Lyon- Zwicky] 
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FIG. 2: Numerically leading contributions to the decay rate of B ! K`` in the high q2-region. (a) and (b) O7 and O9,10 short distance
contributions. These contributions are proportional to the local (short distance) form factors. (c) long distance charm-loop contribution which
in (naive) factorisation is proportional to the same form factor times the charm vacuum polarisation hc(q

2). The charm bubble itself is the full
non-perturbative vacuum polarisation since it is extracted directly from the data.

Oc

1,2 which have sizeable Wilson coefficients.) In this section we employ the (naive)6 factorisation approximation (FA) for
which,

hK|C1Oc

1 + C2Oc

2|Bi|FA / (C1 + C2/3)fB!K

+ (q2)hc(q
2) , (13)

the matrix element factorises into the charm vacuum polarisation hc times the short distance form factor as defined in Eq. (A.7).
This contribution has got the same form factor dependence as C9 and can therefore be absorbed into an effective Wilson coeffi-
cient Ce↵

9 (A.9) and (A.10). The combination C1+C2/3 is known as the “colour suppressed" combination of Wilson coefficients
because of a substantial cancellation of the two Wilson coefficients (c.f. appendix A 3). This point will be addressed when we
discuss the estimate of the O(↵s)-corrections.

B. SM-B ! K`` in factorisation

Our SM prediction with lattice form factors [12] (c.f. appendix A 2 for more details), for the B ! K``-rate are shown in
Fig. 3 against the LHCb data [1, 13]. It is apparent to the eye that the resonance effects, in (naive) factorisation, turn out to have
the wrong sign! Not only that but they also seem more pronounced in the data which will be reflected in the fits to be described
below.

IV. COMBINED FITS TO BESII AND LHCB DATA IN AND BEYOND FACTORISATION

Before addressing the relevant issue of corrections to the SM-FA in section V, we present a series combined fits to the BESII
and LHCb-data. We first describe the fit models before commenting on the results towards the end of the section. The number of
fit parameters and the number of d.o.f., denoted by ⌫, are given in brackets below. We take 78 BESII data points and 39 LHCb
bins, excluding the last bin which has a negative entry, amounting to a total of 117 data points.

a) Normalisation of the rate, (17 = 1⌘B + 16res fit-parameter ⌘B, ⌫ = 117 � 17 � 1 = 99)
In the FA the normalisation of the rate is given by the form factors f+,T (q2). Since the latter are closely related in the
high q2-region by Isgur-Wise relation this amounts effectively to an overall normalisation. To be precise we parameterise
the pre-factor, inserted into (A.1) with ml = 0 for the sake of illustration, as follows

d�

dq2

B!K`
+
`
�

/ ⌘B(|HV |2 + |HA|2) , (14)

where V and A refer to the lepton polarisation.

6 The term naive refers to the fact that in this approximation the scale dependence of the Wilson coefficients Ci is not compensated by the corresponding scale
dependence of the matrix elements, a point to be discussed in the forthcoming section.

DD̄, D*D̄, D*D̄* . . .

used BESII data

  

[Lyon-Zwicky] (see also [Brass, Hiller & Nisandzic]): a posteriori 
check of KS approach

●  Requires additional factors to match measurements

●  R ratio cannot correctly reproduce the resonances

Non-local form-factors

Factorization approximation [Krugher-Seghal]

hc(q2)

mailto:pmagalhaes@cbpf.br
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non local charm contribution to B → Kμμ

  

[Lyon-Zwicky] (see also [Brass, Hiller & Nisandzic]): a posteriori 
check of the factorization approach

●  Requires additional factors to match measurements

●  R ratio cannot correctly reproduce the resonances:
e.g. ª(3770) is a D-wave resonance so its decay-constant 

  vanishes in the non-relativistic limit!

mailto:pmagalhaes@cbpf.br
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Long distance model 

  

More general approach (in collaboration with D. van Dyk and S. Kürten): 

Fix parameters using: 

(BES, BaBar, Belle)

(LHCb, BaBar, Belle)

(for illustration only! )

mailto:pmagalhaes@cbpf.br
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Long distance model 

  

Number of parameters:

– Naive approach (Breit-Wigners): widths and masses are 

channel dependent → hundreds of parameters

– K matrix approach: impose unitarity of the S matrix

real-valued couplings

non-resonant contributions

effective channel to light hadrons (needed for the         )eff

[Chung, Brose, et al. 1995]

[Uglov, Kalashnikova, et al. 2019]

mailto:pmagalhaes@cbpf.br


Pat  - Dan - Meril input for  B → DDh b → sℓℓ

8

 2021

Long distance model 

  

Strategy:

1) Fit the R ratio and                    cross-section 

measurements

2) Use it with    Dalitz plot analysis to predict  

spectrum

mailto:pmagalhaes@cbpf.br
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  status in LHCbB → DD̄h
• First  results from LHCb in 2020:B → DDh
JHEP12 139 PRD102 051102

• First study of amplitude structure, also in 2020, using B+ → D+D−K+

4 world-best BFs 1 first observation

PRL125 242001 PRD102 112003

Big surprise in the  spectrumD−K+

Conceived as a clean insight into charmonium spectrum

big & clean Model independent and 
dependent discovery of exotic 

 structurecsūd̄

mailto:pmagalhaes@cbpf.br
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  status in LHCbB → DD̄h
• Despite the exotic reflection, clean access to the charmonium spectrum

ψ(3770)

χc(3930)

ψ(4040)
ψ(4160)

ψ(4415)

Discovery of scalar state

Needed both the expected 
 *and* a new χc2(3930) χc0(3930)

• Exploration of the new  structures is a high priority: incorporating a wide 
array of  decays to confirm and probe it

• Will gain further handles on the charmonium states, beyond  and , 
through tricky >3-body analyses to access  and 

D−K+

B → D(*)D(*)h(*)

D0D0 D+D−

D*+D− D*+D*−

Key questions: • Theoretical models for  states: tetra quark? 
molecule? threshold enhancement?

• Modelling of : several broad, overlapping states

D−K+

D0K+

mailto:pmagalhaes@cbpf.br
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 2021B ! Kµµ

Why we think charm rescattering can play a role?

Propose an alternative data-driven approach to calculate this exclude 
charm-rescattering contribution!

work in progress
Kostas and Roman

FSI are sources of strong phase variation that can interfere with other sources

 observed this effect in B → πππ

*+(0)
0(−)D

D 0(+)

B +

+

D

 +

 −

π

π

π
+

In what follows, we are only interested in the dynamics above 3 GeV2 where
the low mass resonances contributions come mainly from their tails. Therefore,
the amplitude A±

tree can be approximated as a flat nonresonant (NR) amplitude
with the constant weak phase, �:

A±
tree = a0 e

±i� , (19)

where a0 is complex to accommodate a strong phase.
The total amplitude was simulated using Laura++ software [37] with hun-

dred thousands events. There are two main variables when two amplitudes
interfere: the relative phase between them and the relative magnitude, in prin-
ciple those quantities are fixed by a fit to data. In our toy model we have
to chose a0 and in order to have an insight on the typical results one gets by
changing this quantity. We present a systematic study with model II.

To start our simulations, it is interesting to check the signature of each ampli-
tude A±

tree and ADD̄ alone in the phase-space projected on the m⇡⇡ high invari-
ant mass4. We integrate in the m⇡⇡ low invariant mass starting at m2

⇡⇡=3 GeV2

to exclude the low energy interaction region. In Fig. 3, one can see the re-
sult from the flat NR amplitude deformed by the phase-space integral and the
hadronic loop with model II. Each of them alone does not lead to CP violation,
as expected.

5 10 15 20 25
)4/c2high (GeV-π+π

2m

0

100

200

300

400

500 B-

Amplitude projection - Nonresonant

5 10 15 20 25
)4/c2high (GeV-π+π

2m

0

500

1000

1500

2000

2500

3000 B-

Amplitude projection - Charm loop

Figure 3: LAURA++ Toy Monte-Carlo simulation: (left) only the flat nonresonant tree
amplitude; (right) only the charm loop with rescattering amplitude (model II).

In Fig. 4, we present the study of how the amplitudes interfere with di↵erent
choices for a0. We set the relative magnitude for the NR to be twice the charm
loop and change the relative global phase between them. As one can see, the
di↵erent relative phases can result in completely di↵erent patterns, but with a
clear mark at the resonance position. In the bottom left frame in Fig. 4, the
phase di↵erence of 180o eliminates the �c0 peak and make it appears as a dip.
Whereas with 0o phase the peak is enhanced.

4defined as the higher one from the two possible pairs of ⇡+⇡� invariant masses.
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quark correction Sq [25] which are important for the isospin asymmetries, in part because they depend on the spectator quark
q = u, d. Their contribution to the SM-rate is rather small and can be neglected in a first assessment. The chirality-flipped
operators O0 for B ! K`` are included by replacing

C..7,8,9,10 ! C..7,8,9,10+ ⌘ C..7,8,9,10 + C 0
..7,8,9,10 (A.6)

in the equations above by virtue of parity conservation of QCD. Hence B ! K`` only constrains C+ Wilson coefficients.
The standard form factors, using the notation [28], are given by

hK(p)|s̄iq⌫�µ⌫b|B̄(pB)i = Pµ

T
fT (q2) ,

hK(p)|s̄�µb|B̄(pB)i = Pµ

T
vT + qµ

m2
B

� m2
K

q2
f0(q

2) , (A.7)

with projector Pµ

T
= {(m2

B
� m2

K
)qµ � q2(p + pB)µ}/(mB + mK) and vs and vT are given by:

vs =
m2

B
� m2

K

q2
f0(q

2) , vT =
�(mB + mK)

q2
f+(q2) . (A.8)

The effective Wilson coefficients read

Ce↵
7 = C7 � 4

9
C3 � 4

3
C4 +

1

9
C5 +

1

3
C6 , Ce↵

8 = C8 +
4

3
C3 � 1

3
C5 , Ce↵

9 (q2) = C9 + Y (q2) , (A.9)

with

Y (q2) =afachc(q
2) � hb(q2)

2
(4C3 + 4C4 + 3C5 + C6)

� hu(q2)

✓
�u

�t

(3C1 + C2) +
1

2
(C3 + 3C4)

◆
+

4
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(C3 + 3C4 + 8C5) ;

(A.10)

For the purpose of the discussion of this paper we have split off

afac =

✓
��c

�t

(3C1 + C2) + 3C3 + C4 + 3C5 + C6

◆
. (A.11)

In the literature the following notation is frequently used: afac = 3ae↵ . The function hf (q2)(0), to leading order in perturbation
theory in naive dimensional regularisation and MS-scheme, is given by

h(0)
f

(s) =
4

9

 
5

3
� v2 � ln

m2
f

µ2

!
� 4

9
(3 � v2) |v|

8
>><

>>:

arctan
1

|v| s < 4m2
f

1
2 (ln

1 + v

1 � v
� i⇡) s > 4m2

f
,

(A.12)

with normalised c-quark momentum v(s) ⌘
q

1 � 4m2
f
/s.

2. Numerical input

For the B ! K form factor in the high q2 range we use the recent lattice QCD predictions of HPQCD with staggered fermions
[12]. The uncertainties are below 10% in the relevant kinematic range q2 > sDD̄.

We compute the Wilson coefficients in the basis [47] and transform them into the pseudo-BBL basis defined in [48, eq. 79],
which is equivalent to the BBL basis at leading order in ↵s. The complete anomalous dimension matrix to three loops is taken
from [49], and the expressions for the Wilson coefficients Ci at the electroweak scale are taken from [50] for C1�6 and C9,10 and
[51] for Ce↵

7,8. These are always employed at µ = MW to set the initial conditions for the RG flow; that is to say the uncertainty
owing to ↵s terms at this scale is ignored, although uncertainty of the masses of the W boson and top quark is accounted for.
Since ↵s(MW ) ⇡ 0.11 is small this should have a negligible effect on the overall uncertainty of our calculations. The values of
the Wilson coefficients are given in table 8 of [25].

Similar interaction can happen in  B ! Kµµ

amplitude interferes with short-distance component  
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B ! Kµµ

W+ ! D⇤+
s ! D̄0K+

discontinuities
⇡

3
Rc(s) = Im[hc(s)] =

1

2i
Disc[hc(s)]; (4.2)

From which they applied a once subtracted dispersion relation to extract the whole loop

contribution through:

hc(s) = hc(s0) +
s � s0

i 2⇡
P

Z 1

sJ/ 

dt

t � s0

Disc[hc](t)

t � s � i✏
(4.3)

where P denotes principal value of the integral, s0 is the chosen point far from J/ where

there is information from perturbative QCD in order to fix the arbitrary subtracted con-

stant. The final results is showed in Fig.4 and include all the charmonium resonances

excited states coupled to all the D(⇤)
(s)D̄

(⇤)
(s) states allowed.

5

number of (4 ⇥ 4 � 1)res + 1con = 16 fit parameters. We perform a �2 minimisation and obtain a chi squared per degree of
freedom (d.o.f.) � = 78 � 16 � 1 = 61 of

�2/d.o.f.|BESII�data = 1.015 (9)

which corresponds to a p-value of 44% and is close to �2/d.o.f. = 1.08 [6] as should be the case since we employ the same
data and a quasi identical model. The fit is shown in Fig. 1 (top) and the fit parameters are given in table V in appendix B 1. In
agreement with [6] we observe that �2/d.o.f. � 1.35 when the interference phases �r are omitted from the ansatz (5).

To this end let us comment on the relevance of exotic charmonium resonances discovered throughout the last decade. The
ones of interest for our purposes (1�� states that located in the fit-interval) are are listed in table II with numbers taken from the
review paper [7].3
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FIG. 1: (top) Imaginary part of of vacuum polarisation fitted to BESII data. In the plot we show the BESII error bars with systematic and
statistical uncertainty added in quadrature. The 1�-error band is shown in cyan. (bottom) Real part of the vacuum polarisation obtained from
(3) with error band as for the imaginary part.

From the viewpoint of the dispersion relation (3), it is immaterial, whether the hadronic model is accurate as long as the fit is

3 One could also include the X(4630) and Y (4660) [7] which are just � 150 MeV below the kinematic endpoint smax � mB � mK � 4.8 GeV.

Figure 4. Roman fit BES data

However, in our case we need only the contribution from DD̄ coupled to the char-

monium resonances. To obtain that relation, we used BESII parametrization with the

resonances described as Breit-Wigners and extract only the contribution that is referred

to DD̄ through resonances before they decay to photons. Where we have completed the

imaginary part by including resonances below the open channel and continuum above it.

5 Final results

Work In Progress...

We used the PDG value of the B(B+ ! DDs) to set the parameter C0 ⇠ 10�5. The

full amplitude of the triangle diagram, with all the parts putting together, result in the

magnitude and phase given in Fig.1.

5

In our case, we considered the proper triangle integral with the o↵-shell propagators

and we considered both the absorptive and dispersive part of the it. Our amplitude is given

by

A(s12) = CW

Z
d4`

(2⇡)4
↵ + �D̄0 � �a

�D0 �D̄0 �D⇤ �a
TDD̄!µ+µ�(s12) , (2.5)

where �Di = PDi � m2
Di

+ i✏, and PD0 = ` � p⇡, PD̄0 = PB � `, PD⇤ = Pa = `, and we

considered the propagator of D⇤
s as a complex pole: m2

D⇤ ! m2
D⇤ � i�D⇤ (PDG values);

CW =
GFp

2
VcbV

⇤
cs m2

a m2
Ds⇤F

BD(0)FDs⇤(0) (2.6)

↵ = M2
B + M2

K � 2s12 + M2
D0

+ M2
D̄0

� m2
a; (2.7)

And CW can give us a scale size if we include the literature available values for those

constants.

For the rescattering contribution DD̄ ! µ+µ� we decided to use the same vertex for

DD̄ ! cc̄ with a J=1 current as proposed by Colangelo et al. [9], followed by a propagation

of this current to the pair of muons (see next section). From Ref. [9] we have:

h D̄0(P1) D0(P2)| cc̄ i = g ✏µ (P1 � P2)µ = g ✏µ (Pcc̄ � 2 P2)µ = �2 g ✏µ (l � PK)µ (2.8)

where ✏ is the polarization vector of the vector current cc̄ and ✏ . Pcc̄ = 0 by construction.

We also assume

TDD̄!µ+µ�(s12) = �2 g ✏µ (l � PK)µTcc̄!µµ(s12); (2.9)

Now the integral 2.5 is a tensorial one!

The exclusive contribution from the hadronic triangle loop, i.e. the integral above,

results in the magnitude and phase shown in Fig. 3.
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Figure 2. triangle charm loop contribution to the total B+ ! K+µ+µ� decay amplitude without
the rescattering amplitude and the overall factor C0.
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Now the integral 2.5 is a tensorial one!

The exclusive contribution from the hadronic triangle loop, i.e. the integral above,

results in the magnitude and phase shown in Fig. 3.
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Figure 2. triangle charm loop contribution to the total B+ ! K+µ+µ� decay amplitude without
the rescattering amplitude and the overall factor C0.

3 heavy quark symmetry

Add theory statement to support this argument

3

(p  ) 3

B
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(p  ) 1

K
+ (p  ) 2

0
D

D 0

D
*0

Κ
 +

Κ
 −

s

weak transition   B+ ! W+D̄0

form factor for 

¯D0(⇤)D0(⇤) ! Rcc̄ ! µ+µ�

µ+

µ�

( ) *

( ) *0

+

(Roman’s work)

 Br from                    BES data 
with a Dispersion Relation

e+e− → DD̄

The charm rescattering amplitude helicity average:

(q2, ℓ)(q2)

tensor integral to deal with 
angular distribution

 charm rescattering effects in B → Kμμ

Use the same FSI approach as used in  for B → πππ
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Figure 3. Multiple triangle charm loop contribution to the total B+ ! K+µ+µ� decay amplitude
without the rescattering amplitude and the overall factor C0.

If we use heavy quark symmetry to considered D⇤0 and D0 can contribute in the

triangle fig. 1. By keeping the B ! D⇤
s vertex fix we can account to 4 combination of

triangles as given in fig 3.

From PDG we found that there is one order of magnitude di↵erence between the

Branching Fraction of the 2 possible B vertex: BR[S ! D⇤
sD̄0] = 7.6 ± 1.610�3 and

BR[S ! D⇤
s

¯D⇤
0(2007)] = 1.71 ± 0.2410�2. From the upper vertex of the triangle, the D⇤

s

decay to K+ plus possivel

4 TDD̄!µ+µ� rescattering amplitude

To complete the description of the triangle we need to describe the amplitude DD̄ ! µ+µ�.

Following vector meson dominance [11] we expect that this amplitude will be dominated

by vector cc̄ resonances. From the theory point of view, the only available theory is

HMChPT [11], but the specific couplings are not known. Alternative, Zwicky et al. [14]

used the fit to BESII R-ratio data [13] to extract the contribution of the charm loops with

a Dispersion Relation technique above open charm threshold. In their work they relate the

R-ratio given by BESII, Eq. 4.1, above the open channel with the charm loop.

R(s) =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)
(4.1)

Using the optical theorem one can relate the R-ratio as a function of energy with the

Imaginary part of the loop function, which by it self is connected to the total function’s

4
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Figure 3. Multiple triangle charm loop contribution to the total B+ ! K+µ+µ� decay amplitude
without the rescattering amplitude and the overall factor C0.

If we use heavy quark symmetry to considered D⇤0 and D0 can contribute in the

triangle fig. 1. By keeping the B ! D⇤
s vertex fix we can account to 4 combination of

triangles as given in fig 3.

From PDG we found that there is one order of magnitude di↵erence between the

Branching Fraction of the 2 possible B vertex: BR[S ! D⇤
sD̄0] = 7.6 ± 1.610�3 and

BR[S ! D⇤
s

¯D⇤
0(2007)] = 1.71 ± 0.2410�2. From the upper vertex of the triangle, the D⇤

s

decay to K+ plus possivel

4 TDD̄!µ+µ� rescattering amplitude

To complete the description of the triangle we need to describe the amplitude DD̄ ! µ+µ�.

Following vector meson dominance [11] we expect that this amplitude will be dominated

by vector cc̄ resonances. From the theory point of view, the only available theory is

HMChPT [11], but the specific couplings are not known. Alternative, Zwicky et al. [14]

used the fit to BESII R-ratio data [13] to extract the contribution of the charm loops with

a Dispersion Relation technique above open charm threshold. In their work they relate the

R-ratio given by BESII, Eq. 4.1, above the open channel with the charm loop.

R(s) =
�(e+e� ! hadrons)

�(e+e� ! µ+µ�)
(4.1)

Using the optical theorem one can relate the R-ratio as a function of energy with the

Imaginary part of the loop function, which by it self is connected to the total function’s
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we considered in the HQ spin symmetry 4 different triangle 
contributions and weight the different contributions of BR
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Remarks 

To include this amplitude in the full description of :B → Kμμ

significant even at low  ! q2

Caveats

¯D0(⇤)D0(⇤) ! Rcc̄ ! µ+µ�
- accuracy on the relative coupling 

- care is needed as BES input already 
sums over muon helicities 

- improve our description of  the 
relative FF and BR (?)

 add it coherently in a isobar description together with resonant and 
non resonant  components to fit datacc̄

mailto:pmagalhaes@cbpf.br


Pat  - Dan - Meril input for  B → DDh b → sℓℓ

15

 2021

how we do the bridge ? 

SMExp

mailto:pmagalhaes@cbpf.br


Pat  - Dan - Meril input for  B → DDh b → sℓℓ

16

 2021

Discussion

Not possible to avoid the DK resonances in   B → DD̄h
not well defined theoretically 

Non-resonant  charm contributions:

how to model it in QCD approach?

not negligible in hadronic approach!

LHCb new data

How to connect our knowledge from diff regions?
14
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 (3770).. (4415)

smax = (mB � mK)2sDD̄ = 4m2
DsJ/ 

R(egion)1 R(egion)2 R(egion)3

FIG. 7: Three regions in q2, relevant to the charm-resonances: narrow resonance region which cannot be described by perturbative QCD (left),
broad resonance region, of interest to this work, described by perturbative QCD on average (middle) and the third region which is even locally
described by perturbative QCD (right).

C. The size of the SM vertex corrections over duality interval

The residue version of factorisable versus non-factorisable contribution (19) is given by

xr = (⇢r � 1) =
rcor
r

rfac
r

' xD(s)|
s'm2

r
. (29)

where

xD(s) ⌘ Disc[HV,cor](s)

Disc[HV,fac](s)
. (30)

The quantity xD is an improved version of x (19) since it is does not depend on the subtraction constant for example which is
immaterial to the shape in the region of interest. The contribution of the FA is given by Disc[HV,fac](s) = 2iIm[HV,fac](s)
(2), whereas the function Disc[HV,cor,b](s) does not obey such a simple relation since there are cuts below the charm threshold
Im[HV,cor,b]q2<4m2

c
6= 0. For example cuts in the variable m2

b
� (2mc + ms)2 in Fig. 1c in [19]. Using the results in [21] one

can verify that Im[HV,cor,b](4m2
c
��)/Im[HV,cor,b](4m2

c
+�) (for 0 < � < 2 GeV2) is a very small quantity and hence those

cuts are negligible in the region where q2 > 4m2
c
.14 Hence we conclude that

Disc[HV,cor,b](s) ' 2iIm[HV,cor,b](s) (31)

is a good approximation.15 Once more we emphasise that only the vertex corrections proportional to Qc are to be considered.
The procedure for obtaining them has been outlined under the first item in section V A. The quantity xb

D
' �0.5 throughout

the relevant interval sDD̄ < q2 < smax for µ = 4 GeV and only slightly higher values for µ = 2 GeV as can be inferred from
Fig. 13 in appendix A 4. The optimal choice of scale µ = mb, aimed at maximising the effect of the BESII-data, is discussed in
appendix A 4. Hence the size of the vertex correction integrated over R2 (c.f. Fig. 7) is approximately given by

(xD)SM
R2

=
hDisc[HV,cor]QCDi(sDD̄,smax)

hDisc[HV,fac]QCDi(sDD̄,smax)

(28)
' hDisc[HV,cor]pQCDi(sDD̄,smax)

hDisc[HV,fac]pQCDi(sDD̄,smax)
' �0.5 , (32)

for any reasonably smooth smearing function !. The last equality follows from the fact that xD(s) is nearly constant throughout
the region R2. This is estimate puts the previous estimate |x| ' 0.5 on more solid grounds and settles the effect of the sign in a
more definite way. As previously mentioned a correction of �0.5 (32) is down by a factor of seven.

14 This assertion is true beyond the finite gap due to the Coulomb singularity originating from diagram 1e in [19, 21]. In any case this diagram corresponds to
the h

(1)-correction in (11) which we do subtract as explained previously.
15 We have verified this chain of arguments by using (31) in a dispersion relation of the type (3). There is a further complication. The results in [19] are not valid

for q
2

> m
2
b

. We have overcome this problem by setting the function to its value at q
2 = m

2
b

for q
2

> m
2
b

. This ought to be a good approximation since the
function is expected to go to a constant corresponding to the logarithmic UV-divergence. The result agrees extremely well for s close to the subtraction point
s0 which justifies our previous assertions. A further benefit is that the explicit (approximate) construction of the dispersion relation also eliminates doubts
about complex anomalous thresholds which can appear on the physical sheet in B ! K``-type decays e.g. [27]. Complex anomalous thresholds would
invalidate Eq. (31).

-q2

z-expansion and OPE approach

How to improve the accuracy on the relative couplings  
¯D0(⇤)D0(⇤) ! Rcc̄ ! µ+µ�

¯D0(⇤)D0(⇤) ! Rcc̄ ! µ+µ�{
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Backup
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D

 +

 −

π

π

π +

In what follows, we are only interested in the dynamics above 3 GeV2 where
the low mass resonances contributions come mainly from their tails. Therefore,
the amplitude A±

tree can be approximated as a flat nonresonant (NR) amplitude
with the constant weak phase, �:

A±
tree = a0 e

±i� , (19)

where a0 is complex to accommodate a strong phase.
The total amplitude was simulated using Laura++ software [37] with hun-

dred thousands events. There are two main variables when two amplitudes
interfere: the relative phase between them and the relative magnitude, in prin-
ciple those quantities are fixed by a fit to data. In our toy model we have
to chose a0 and in order to have an insight on the typical results one gets by
changing this quantity. We present a systematic study with model II.

To start our simulations, it is interesting to check the signature of each ampli-
tude A±

tree and ADD̄ alone in the phase-space projected on the m⇡⇡ high invari-
ant mass4. We integrate in the m⇡⇡ low invariant mass starting at m2

⇡⇡=3 GeV2

to exclude the low energy interaction region. In Fig. 3, one can see the re-
sult from the flat NR amplitude deformed by the phase-space integral and the
hadronic loop with model II. Each of them alone does not lead to CP violation,
as expected.

5 10 15 20 25
)4/c2high (GeV-π+π

2m

0

100

200

300

400

500 B-

Amplitude projection - Nonresonant

5 10 15 20 25
)4/c2high (GeV-π+π

2m

0

500

1000

1500

2000

2500

3000 B-

Amplitude projection - Charm loop

Figure 3: LAURA++ Toy Monte-Carlo simulation: (left) only the flat nonresonant tree
amplitude; (right) only the charm loop with rescattering amplitude (model II).

In Fig. 4, we present the study of how the amplitudes interfere with di↵erent
choices for a0. We set the relative magnitude for the NR to be twice the charm
loop and change the relative global phase between them. As one can see, the
di↵erent relative phases can result in completely di↵erent patterns, but with a
clear mark at the resonance position. In the bottom left frame in Fig. 4, the
phase di↵erence of 180o eliminates the �c0 peak and make it appears as a dip.
Whereas with 0o phase the peak is enhanced.

4defined as the higher one from the two possible pairs of ⇡+⇡� invariant masses.

10

B decay in two charmed mesons have a hadronic penguin like topology, that
together with the subsequent rescattering DD̄ � ⇡⇡ is assumed to contribute
with a strong phase.

Inspired by the isobar model description of three-body decays, the amplitude
of B± ! ⇡�⇡+⇡± decay can be parametrised by two independent contributions
as:

AB±!⇡�⇡+⇡±(s12, s23) = A±
tree(s12, s23) +ADD̄(s12, s23) , (1)

where we assume that ADD̄ amplitude is dominated by a charm hadronic loop,
Fig. 1, and A±

tree which is the dominant topology, has weak (±�) and strong
phases. Furthermore, the �c0 will be introduced as a resonant state below
threshold within the DD̄ scattering amplitude. We will exploit the model in
the high mass region of the B± ! ⇡�⇡+⇡± phase space to find out the man-
ifestation in the CP violation distribution of the DD̄ ! ⇡⇡ rescattering, with
�c0 being a resonant state below the DD̄ threshold.

A remark on the implication of CPT invariance to CP asymmetry for the
B± ! ⇡�⇡+⇡± decay in the present model is appropriate. In the framework
developed by Wolfenstein [16] (see also [29]) where the hadronic final-state inter-
actions and the CPT constraint were considered together, the CP asymmetry
seen in channels that can be coupled by strong QCD dynamics are related.
The consequence of this framework is that the sum of the partial widths for
those channels should be identical to the sum in the charge conjugated chan-
nels. Such result is more restrictive than the general CPT condition that gives
equal lifetime for a particle and its anti-particle. The Wolfenstein formalism
was further elaborated in [31], where It was considered the hadronic transition
matrix of di↵erent channels coupled by FSI in the expansion of the CP violat-
ing B decay amplitude. Restricted to two channels the leading order formalism
was applied to study the CP asymmetries seen in the B± ! K�K+K± and
B± ! K±⇡�⇡+ in the mass region where the K+K� and ⇡+⇡� channels are
strongly coupled. It explained the remarkable opposite signs and the shape of
the projected CP asymmetry. This mechanism was confirmed by the LHCb
collaboration amplitude analyses for B± ! K�K+⇡± [9] which found 65%
of asymmetry due to KK ! ⇡⇡ with a di↵erent sign of the one observed in
B+ ! ⇡+⇡+⇡� decays [8, 7], although with less intensity.

We observe that the leading order formalism also applies to the present
model of the three-body B decay where the B± ! DD̄⇡± and B± ! ⇡�⇡+⇡±

channels are coupled by the strong force and the associatedDD̄ and ⇡⇡ S-matrix
provides the FSI contribution to the decay amplitude. The CP asymmetry of
the B± ! DD̄⇡± has to receive a corresponding contribution with opposite sign
respecting CPT invariance if only this channel coupling is present. However, the
DD̄ channel can also coupled to KK as we already discussed in [11], suggesting
that the CP asymmetry in B± ! DD̄⇡± would call for contributions from final
state interaction involving more hadronic channels, a discussion that is much
beyond the scope of the present work.

Hadronic charm loop. The charm rescattering contribution to the B± !
⇡�⇡+⇡± decay can be described by a triangle loop of D mesons as the source

4
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Figure 30: AN

CP
in Dalitz plot bins with equal number of events (sWeighted background

subtracted and acceptance corrected) for B
± ! K

±
⇡
+
⇡
� (top left), B± ! K

±
K

+
K

�

(top right), B± ! ⇡
±
⇡
+
⇡
� (bottom left) and B

± ! ⇡
±
K

+
K

� (bottom right).

is located mainly in the low mass region of m⇡⇡ < 1.5GeV/c2, where a clear interference1017

structure appears in the B
+-B� distribution.1018

10.1.2 B
± ! K

±
K

+
K

�
1019

The projections of the B± ! K
±
K

+
K

� Dalitz plot are shown in Figure 34. We can identify1020

in mK+K� low the narrow vector resonances: �(1020) as the first bump around 1GeV/c21021

and �c0(1P ) in the region around 3.4GeV/c2. The resonances in the mK+K� high projection1022

are covered by the � distribution along this axis. There is also a broad concentration at low1023

mass above 2.0GeV2
/c

4, which could correspond to the f2(1525) resonance. Also visible1024

only in the B
± ! K

±
K

+
K

� Dalitz plot (Figure 28) is the contribution of B± ! J/ K
±

1025

with J/ ! K
+
K

�, around 9.6GeV2
/c

4 in m
2
K+K� low. Table 31 shows the Particle Data1026

Group list of measured branching fractions for B± ! K
±
K

+
K

�.1027

The mass projections reveal a clear signature of CP asymmetry, with a large excess of1028

B
+ events for mK+K� low < 1.6GeV/c2 and m

2
K+K� high between 2.4GeV/c2 and 4.0GeV/c2.1029

Figure 35 is a zoom in the mK+K� low region of high asymmetry, that includes the �(1020).1030
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Study of B+
c decays to the K+K�⇡+

final state and evidence for the decay

B+
c ! �c0⇡

+

The LHCb collaboration†

Abstract

A study of B+
c ! K+K�⇡+ decays is performed for the first time using data

corresponding to an integrated luminosity of 3.0 fb�1 collected by the LHCb ex-
periment in pp collisions at centre-of-mass energies of 7 and 8TeV. Evidence for
the decay B+

c ! �c0(! K+K�)⇡+ is reported with a significance of 4.0 stan-

dard deviations, resulting in the measurement of �(B+
c )

�(B+) ⇥ B(B+
c ! �c0⇡+) to be

(9.8+3.4
�3.0(stat)± 0.8(syst))⇥ 10�6. Here B denotes a branching fraction while �(B+

c )
and �(B+) are the production cross-sections for B+

c and B+ mesons. An indication
of bc weak annihilation is found for the region m(K�⇡+) < 1.834GeV/c2, with a
significance of 2.4 standard deviations.

Submitted to Phys. Rev. Lett.

c� CERN on behalf of the LHCb collaboration, license CC-BY-4.0.

†Authors are listed at the end of this article.
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Run I

The charm rescattering as a new mechanism to generate CP violation 
at high mass region of  phase-spaceB → πππ
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B ! ¯D0(⇤)Ds1(2536)
+ ⇥B(Ds1(2536) ! D⇤(2007)0K+) (2.2 ± 0.7) × 10−4

B ! D̄⇤(2007)0Ds1(2536)
+ ⇥B(Ds1(2536) ! D⇤(2007)0K+) (5.5 ± 1.6) × 10−4

PDG BR

B ! D̄0DsJ(2700)
+ ⇥B(DsJ(2700)

+ ! D0K+) (5.6 ± 1.8) × 10−4

Backup

Rescattering model
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Long distance model issues 

  

Open issues (detailed in the backup)

1) Centrifugal barrier factors (finite size effects)

2) Non-resonant contributions

3) Experimental inputs (choice of channels, fit model(s))

4) Relation to the OPE description at small q2

Open issues (some thought in the following slides)
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Backup slides 

  

1)  Centrifugal barrier factors (finite size effects) [Blatt, Weisskopf, 1952]

Are these factors really needed?
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Backup slides 

  

2) Non-resonant contributions

(Nchannel)
2 parameters

●  These constants account for Rudsc  R! uds

●       with i = 0 are enough to get a good fit of

●  Can we safely set the other to zero? 
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Backup slides 

  

3) Experimental inputs (choice of channels, fit model(s))

●  The charge assignment in   allows to avoid  

resonances

●  We need access to specific waves contributions:

DD DD* D*D*

S - wave

P - wave

D - wave

F - wave

 Needed contribution

 Contribution that 
need to be under 
control
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Backup slides 

  

4) Relation to the OPE description at small q2

●  The z parametrization describes the spectrum below the   

threshold

●  The K matrix approach describes the spectrum above the 

threshold

●  A fit can vary them independently but they are connected to 

the same OPE!

–  How do we reconcile the two parametrizations?

–  In principle they should be continuous and smooth at the 

threshold
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