$B ightarrow K \pi \ell^+ \ell^-$ S-wave and all that

K. Keri Vos, Konstantinos A. Petridis

University of Maastricht, Bristol

April 21, 2021

Keri, Kostas (UM, UoB)

Setting the scene

$$\begin{array}{l} \frac{\mathrm{d}\Gamma}{\mathrm{d}m_{K\pi}\mathrm{d}\cos\theta_{\ell}\mathrm{d}\cos\theta_{K}\mathrm{d}\phi} = & \frac{9}{32\pi} \Big[J_{1\epsilon}\sin^{2}\theta_{K}+J_{1c}\cos^{2}\theta_{\epsilon \mathrm{d}} + J_{2\epsilon}\sin^{2}\theta_{K}\cos2\theta_{\ell} + J_{2c}\cos^{2}\theta_{K}\cos\theta_{\ell} \\ & + J_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi + J_{4}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi \\ & + J_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi + J_{6}\sin^{2}\theta_{K}\cos\theta_{\ell} \\ & + J_{6c}\cos^{2}\theta_{K}\cos\theta_{\ell} + J_{7}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi + J_{8}\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi \\ & + J_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin2\phi \Big] \times |BW_{P}(m_{K\pi})|^{2} \end{array} \right] \\ & + \frac{1}{4\pi} \Big[(J_{1e}^{c} + J_{2a}^{c}\cos2\theta_{\ell}) |BW_{S}|^{2} \Big] - \mathbf{S}\text{-wave} \\ & + [J_{1b}^{cr}\mathrm{Re}(BW_{S}BW_{P}^{*}) - J_{1b}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\cos\theta_{K} \\ & + [J_{2b}^{cr}\mathrm{Re}(BW_{S}BW_{P}^{*}) - J_{5b}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin2\theta_{\ell}\cos\theta_{K} \\ & + [J_{2}^{cr}\mathrm{Re}(BW_{S}BW_{P}^{*}) - J_{5}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin2\theta_{\ell}\cos\phi \\ & + [J_{2}^{cr}\mathrm{Re}(BW_{S}BW_{P}^{*}) - J_{5}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\cos\phi \\ & + [J_{7}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) - J_{5}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ & + [J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) - J_{5}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ & + [J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) - J_{5}^{ci}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ & + [J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) + J_{7}^{c}\mathrm{Re}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ & + [J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) + J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ & + [J_{5}^{c}\mathrm{Im}(BW_{S}BW_{P}^{*}) + J_{5}^{c}\mathrm{Re}(BW_{S}BW_{P}^{*})]\sin\theta_{t}\sin\theta_{K}\sin\phi \\ \\ & + [J_{5}$$

▶ $B^0 \rightarrow K^{*0}(892)\mu^+\mu^-$ measurements performed in particular $m(K\pi)$ range

► S-wave component accounted for in LHCb measurements

Measurements of S-wave so far

 LHCb has also performed dedicated measurements of the S- and D-wave components

▷ Measurement of S-wave fraction F_s in $m_{K\pi} \in [6.4, 1.2]$ GeV and $m_{K\pi} \in [0.796, 0.996]$ GeV using using model for $m_{K\pi}$ lineshapes [JHEP11(2016)047]

 \triangleright S-P-D moment analysis around $m_{K\pi} \in [1.3, 1.5]$ GeV [JHEP12(2016)065]

 \rightarrow S-wave mostly treated as nuisance parameter but given its large contribution, it could play an important role! How S-wave observables could be useful? See talk by Mark and Marcel!

Treatment of lineshape

- 5D differential decay rate of S-wave related observables
 - Typical choice of LASS and relativistic Breit–Wigner parametrisations for S- and P-wave lineshapes

▷ Impacts S-P interference observables
$$\tilde{J}_i$$

- Too few candidates to obtain LASS parameters from rare mode (though in wide q² bin we probably have some constraining power)
- ▶ Instead take from $B^0 \rightarrow J/\psi(\psi')K^+\pi^-$ amplitude analyses \rightarrow depends on treatment of exotic states...

$$\begin{split} \frac{d\Gamma_S}{d\cos\theta_\ell\cos\theta_K\phi m_{K\pi}} &= \frac{1}{4\pi} \left(\left[\tilde{J}_{1a}^c + \tilde{J}_{2a}^c\cos2\theta_\ell \right] |LASS(m_{K\pi})|^2 \\ &+ \left[\tilde{J}_{1b}^c\cos\theta_K + \tilde{J}_{2a}^c\cos\theta_K\cos2\theta_\ell \\ &+ \tilde{J}_4\sin\theta_K\sin2\theta_\ell\cos\phi + \tilde{J}_5\sin\theta_K\sin\theta_\ell\sin\phi_\ell\cos\phi \\ &+ \tilde{J}_7\sin\theta_K\sin\theta_\ell\sin\phi + \tilde{J}_8\sin\theta_K\sin2\theta_\ell\sin\phi \right] \\ &\quad LASS(m_{K\pi})^*BW(m_{K\pi}) \end{split} \right) \end{split}$$

Importance of lineshape

Measurements of P-wave observables are independent of the lineshape. But S-wave observables suffer from large systematic uncertainty.

Thanks to Alex Marshall and Mark Smith

 $a^2 \neq 5.0 \text{GeV}^2$

Re(PkLASS*

1.2

 \rightarrow Induce systematic uncertainty on \hat{J}_i commensurate to statistical precision of Run1+2 [Preliminary toy studies]

Keri, Kostas (UM, UoB)

Beyond Flavour Anomalies II

1.2

Direct Fits to Wilson Coefficients]

 Model a broad resonant component at the amplitude level:

$$A_{\mathbf{00}}^{L,R}(q^{\mathbf{2}}) \propto \sqrt{\beta_{\ell}} \lambda_{K_{\mathbf{0}}^{*}} \left[(C_{\mathbf{9}}^{\text{eff}} \mp C_{\mathbf{10}})f_{+}(q^{\mathbf{2}}) + C_{\mathbf{7}}^{\text{eff}} 2m_{b} \frac{f_{T}(q^{\mathbf{2}})}{(m_{B} + m_{K_{\mathbf{0}}^{*}})} \right]$$

 The Kπ dependence included as factor into the amplitude

 $\mathcal{A}_{00}(q^2, m_{K\pi}^2) = A_{00}^{L,R}(q^2)G(m_{K\pi}^2)$

- ► In absence of consensus on $B \to K\pi$ FFs can
 - Take variations of existing FFs as systematic?
 - ▷ Try to float FF parametrisation?
 - Decouple S-wave from P-wave amplitudes?

Light-Cone Sum Rules for S-wave $B \to K\pi$ Form Factors

Sébastien Descotes-Genon, Alexander Khodjamirian, Javier Virto and K. Keri Vos

in progress...

The plan...

- Constrain $B \rightarrow K\pi$ S-wave form factor by imposing what we know of QCD
- ► Light-cone sum rule analysis (as done for *P*-wave) See also talk Javier 2020
 - [J. Virto, A. Khodjamirian, S. Descotes-Genon JHEP 1912, 083 (2019)] [arXiv:1908.02267]
 - \triangleright Improvement over assuming K^* is a stable state
 - \triangleright Finite width effects in *P* wave at 20% level for BR
 - $\triangleright~$ Higher resonances large impact \rightarrow can be constrained by moment analysis See also talk Javier 2020/21
- ► S wave even more challenging; generally broad resonances
- ▶ Relevant for $B \to K^* \ell \ell$, but also $B \to K \pi \pi !$

S-wave $B \rightarrow K\pi$ form factors

▶ Generated by the axial-vector and pseudotensor $b \rightarrow s$ transition currents

$$j^{\mu}_{A} = \bar{s}\gamma^{\mu}\gamma_{5}b, \quad j^{\mu}_{T} = \bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b.$$

• Form factors $F_i(k^2, q^2, q \cdot \bar{k})$ defined as

$$\begin{aligned} &-i\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\gamma^{\mu}\gamma_{5}b|\bar{B}^{0}(p)\rangle &= F_{t}\,k_{t}^{\mu}+F_{0}\,k_{0}^{\mu}+\ldots, \\ &\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}\sigma^{\mu\nu}q_{\nu}\gamma_{5}b|\bar{B}^{0}(p)\rangle &= F_{0}^{T}k_{0}^{\mu}+\ldots. \end{aligned}$$

S-wave isolated via partial wave expansion:

$$F_{0,t}(k^2,q^2,q\cdot\bar{k}) = F_{0,t}^{(\ell=0)}(k^2,q^2) + \sum_{\ell=1}^{\infty} \sqrt{2\ell+1} F_{0,t}^{(\ell)}(k^2,q^2) P_{\ell}^{(0)}(\cos\theta_K),$$

▶ In progress: LCSR expressions for $B \to (K\pi)_S$ form factors $F_{0,t}^{(\ell=0)}$ and $F_0^{T(\ell=0)}$

LCSR I [Analyticity + Unitarity + Duality]

Start with correlation function:

$$\Pi_b(k,q) = i \int d^4 x \, e^{ik \cdot x} \langle 0 | \mathrm{T}\{j_{\mathcal{S}}(x), j_b(0)\} | \bar{\mathcal{B}}^0(q+k) \rangle \,,$$

• Use dispersion relation in the variable k^2 :

$$\Pi^{(\mathsf{OPE})}(k^2,q^2) = rac{1}{\pi} \int\limits_{(m_K+m_\pi)^2}^{\infty} ds \, rac{\mathrm{Im}\Pi(s,q^2)}{s-k^2} \, .$$

Obtain spectral density by inserting a full set of states

$$2 \operatorname{Im} \Pi_b^{(K\pi)}(k,q) = \sum_{K\pi} \int d au_{K\pi} \langle 0|j_S | K(k_1)\pi(k_2) \rangle^* \langle K(k_1)\pi(k_2)|j_b| ar{B}^0(q+k)
angle \; ,$$

$$\text{Im}\Pi(s,q^2) = \text{Im}\Pi^{(\kappa_{\pi})}(s,q^2) + \text{Im}\Pi^{(h)}(s,q^2)\theta(s-s_h).$$

LCSR II

[Analyticity + Unitarity + Duality]

Assume quark-hadron duality

$$\int_{s_h}^{\infty} ds \, \frac{\mathrm{Im}\Pi^{(h)}(s,q^2)}{s-k^2} = \int_{s_0}^{\infty} ds \, \frac{\mathrm{Im}\Pi^{(OPE)}(s,q^2)}{s-k^2} \, ,$$

• Perform Borel transformation in the variable k^2

$$\frac{1}{\pi} \int_{(m_{K}+m_{\pi})^{2}}^{s_{0}} ds \, e^{-s/M^{2}} \operatorname{Im}\Pi^{(K\pi)}(s,q^{2}) = \frac{1}{\pi} \int_{m_{s}^{2}}^{s_{0}} ds \, e^{-s/M^{2}} \operatorname{Im}\Pi^{(OPE)}(s,q^{2})$$
$$\equiv \Pi^{(OPE)}(q^{2},s_{0},M^{2})$$

 Π^{OPE}(q², s₀, M²) OPE expression after subtracting the above-threshold contribution from the dispersive integral

LCSR for $B \to (K\pi)_S$

$$\int_{(m_{K}+m_{\pi})^{2}}^{s_{0}} ds \, e^{-s/M^{2}} \omega_{0,t}(s,q^{2}) F_{S}(s) F_{0,t}^{(\ell=0)}(s,q^{2}) = i \Pi_{0,t}^{(\mathsf{OPE})}(q^{2},s_{0},M^{2})$$

- ► *s*⁰ effective threshold
- $\omega_{0,t}(s,q^2)$ kinematic factors
- $\succ F_{S}(s) \text{ scalar form factor:} (m_{s} m_{d})\langle K^{-}(k_{1})\pi^{+}(k_{2})|\bar{s}d|0\rangle \equiv F_{S}((k_{1} + k_{2})^{2})$
- $\Pi_{0,t}^{(OPE)}$ pert. calculable in terms of *B*-LCDA parameters

LCSR for $B \to (K\pi)_S$

$$\int_{(m_{K}+m_{\pi})^{2}}^{s_{0}} ds \, e^{-s/M^{2}} \omega_{0,t}(s,q^{2}) F_{S}(s) F_{0,t}^{(\ell=0)}(s,q^{2}) = i \Pi_{0,t}^{(\mathsf{OPE})}(q^{2},s_{0},M^{2})$$

Key points:

- ▶ No closed expression for the $F_{0,t}^{(\ell=0)}(s,q^2)!$
- Only information on a weighted integral over the $K\pi$ invariant mass
- Use sum rule to constrain parameters of your favourite $K\pi$ S-wave model

LCSR for $B \to (K\pi)_S$

$$\int_{(m_{K}+m_{\pi})^{2}}^{s_{0}} ds \, e^{-s/M^{2}} \omega_{0,t}(s,q^{2}) F_{S}(s) F_{0,t}^{(\ell=0)}(s,q^{2}) = i \Pi_{0,t}^{(\mathsf{OPE})}(q^{2},s_{0},M^{2})$$

Key points:

- ► No closed expression for the $F_{0,t}^{(\ell=0)}(s,q^2)!$
- Only information on a weighted integral over the $K\pi$ invariant mass
- Use sum rule to constrain parameters of your favourite $K\pi$ S-wave model

Inputs:

- $F_{S}(s)$ from data
- > s_0 from two-point sum rule using scalar $K\pi$ form factor from data

QCD to constrain S wave models

- Use QCD sumrules to constrain $B \rightarrow (K\pi)_S$ parametrizations/models
- Simple sum of Breit-wigners (used for *P*-wave case) does not suffice

Model requirements:

- appropriate analytical properties
- poles corresponding to known resonances
- cuts for the revevant open channels
- simple (linear) dependence on the parameters to be constrained by the sum rules

S wave form factor [preliminary]

- ▶ Based on rescattering πK phase shifts + parametrization for higher resonances
- ▶ Applied to $\tau^- \rightarrow K_S \pi^- \nu_\tau$ data to fit resonance parameters

S wave form factor [preliminary]

- ▶ Based on rescattering πK phase shifts + parametrization for higher resonances
- ▶ Applied to $\tau^- \rightarrow K_S \pi^- \nu_\tau$ data to fit resonance parameters

In progress:

- Use parametrization and constrain its parameters using LCSRs
- Less parameters to constrain by the sumrule (as the parameterization is more fixed)

Keri, Kostas (UM, UoB)

Beyond Flavour Anomalies II

What can data do for us?

Example of use of the data to constrain higher-partial waves:

from: [J. Virto, A. Khodjamirian, S. Descotes-Genon JHEP 1912, 083 (2019)] [arXiv:1908.02267]

- ▶ 41 angular moments depending on *S*, *P*, *D* waves
- ▶ Higher *P*-wave resonances large impact on $B \rightarrow K\pi$
- Can be constrained by moment analysis
- Similar approach for the S wave?

Keri, Kostas (UM, UoB)

Discussion:

In progress:

Hybrid theory + data driven approach using LCSR

Questions:

- Moment analyses in q^2 and k^2 bins over the full spectrum possible?
- Optimal bin sizes? (precision versus information)
- Can we minimise dependence on BSM contributions?

Remarks:

- ► R_{K^*} , $R_{K\pi}$ only clean in SM
 - \triangleright S-wave form factors could be important to go beyond an SM-null test
- How should we treat the S-wave amplitude in direct fits to Wilson Coefficients ? (see talk A. Mauri)

Discussion:

In progress:

Hybrid theory + data driven approach using LCSR

Questions:

- Moment analyses in q^2 and k^2 bins over the full spectrum possible?
- Optimal bin sizes? (precision versus information)
- Can we minimise dependence on BSM contributions?

Remarks:

- ► R_{K^*} , $R_{K\pi}$ only clean in SM
 - \triangleright S-wave form factors could be important to go beyond an SM-null test
- How should we treat the S-wave amplitude in direct fits to Wilson Coefficients ? (see talk A. Mauri)

Thank you for your attention!