# What can we learn from genuine S/P-wave interference observables?

Marcel Algueró<sup>††</sup> (UAB) and Mark Smith<sup>†</sup> (ICL)

In collaboration with: <u>P. Álvarez Cartelle\*, M. McCann<sup>†</sup>, P. Masjuan<sup>††</sup>, J. Matias<sup>††</sup>, M. Patel<sup>†</sup> and K. Petridis<sup>‡</sup> Based on: in preparation [arXiv:21XX.XXXX]</u>

IPPP Workshop Beyond the Flavour Anomalies II, 21 st April 2021





Differential decay rate of the full decay

$$\frac{d^5\Gamma}{dq^2 \, dm_{K\pi}^2 \, d\cos\theta_K \, d\cos\theta_\ell \, d\phi} = W_P + W_S$$

 $q^2 \equiv$  dilepton invariant mass  $\theta_K, \theta_\ell \equiv$  angles final particles  $\phi \equiv$  angle dilepton-plane

Contributions from 
$$B \to K^*(\to K\pi)\ell^+\ell^-$$
 and  $B \to K_0^*(\to K\pi)\ell^+\ell^-$ 

We parametrise the decay as:

$$\begin{split} W_P &= \frac{9}{32\pi} \left[ J_{1s} \sin^2 \theta_K + J_{1c} \cos^2 \theta_K + (J_{2s} \sin^2 \theta_K + J_{2c} \cos^2 \theta_K) \cos 2\theta_l \right. \\ &\quad + J_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + J_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + J_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ &\quad + (J_{6s} \sin^2 \theta_K + J_{6c} \cos^2 \theta_K) \cos \theta_l + J_7 \sin 2\theta_K \sin \theta_l \sin \phi + J_8 \sin 2\theta_K \sin 2\theta_l \sin \phi \\ &\quad + J_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right] \\ \end{split}$$

$$W_{S} = \frac{1}{4\pi} \left[ \tilde{J}_{1a}^{c} + \tilde{J}_{1b}^{c} \cos \theta_{K} + (\tilde{J}_{2a}^{c} + \tilde{J}_{2b}^{c} \cos \theta_{K}) \cos 2\theta_{\ell} + \tilde{J}_{4} \sin \theta_{K} \sin 2\theta_{\ell} \cos \phi \right. \\ \left. + \tilde{J}_{5} \sin \theta_{K} \sin \theta_{\ell} \cos \phi + \tilde{J}_{7} \sin \theta_{K} \sin \theta_{\ell} \sin \phi + \tilde{J}_{8} \sin \theta_{K} \sin 2\theta_{\ell} \sin \phi \right]$$

P-wave described by 6 complex  $A_{\parallel,\perp,0}^{L,R}$  $L, R \equiv$  chirality of outgoing lepton current S-wave described by 2 complex  $A_0^{'L,R}$  $\parallel, \perp, 0 \equiv$  helicity of  $K^*$  meson (P-wave) +2 additional  $A_t, A_s$  if  $m_{\ell} \neq 0$  and scalar op. Amplitudes multiplied by lineshape  $BW_{P,S}(m_{K\pi}^2)$ Observables  $J_i$ ,  $J_i$  described as spin-summed squared amplitudes  $\rightarrow$  structure  $A_i^{L^*}A_i^L \pm A_i^{R^*}A_i^R$ Useful to define complex 2-component vectors combining amplitudes

$$n_{\parallel} = \begin{pmatrix} A_{\parallel}^L \\ A_{\parallel}^{R*} \end{pmatrix}, \quad n_{\perp} = \begin{pmatrix} A_{\perp}^L \\ -A_{\perp}^{R*} \end{pmatrix}, \quad n_0 = \begin{pmatrix} A_0^L \\ A_0^{R*} \end{pmatrix}, \quad n_S = \begin{pmatrix} A_0'^L \\ A_0'^{R*} \end{pmatrix}$$

 $n_i$  vectors used to obtain symmetries among  $J_i$ ,  $\tilde{J}_i$  coefficients

Marcel Algueró & Mark Smith

 $n'_S = \begin{pmatrix} A_0'^L \\ -A_0'^{R*} \end{pmatrix}$ 

Definitions of  $J_i, \tilde{J}_i$  (examples):

$$J_{1s} = \frac{(2+\beta_{\ell}^2)}{4} \left[ |A_{\perp}^L|^2 + |A_{\parallel}^R|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{q^2} \operatorname{Re} \left( A_{\perp}^L A_{\perp}^{R*} + A_{\parallel}^L A_{\parallel}^{R*} \right)$$

$$J_{1c} = |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{q^2} \left[ |A_t|^2 + 2\operatorname{Re}(A_0^L A_0^{R*}) \right] + \beta_{\ell}^2 |A_S|^2$$

$$J_5 = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^R A_{\perp}^{R*}) - \frac{m_{\ell}}{\sqrt{q^2}} \operatorname{Re}(A_{\parallel}^L A_S^* + A_{\parallel}^{R*} A_S) \right]$$

Definitions of  $J_i, \tilde{J}_i$  (examples):

$$J_{1s} = \frac{(2+\beta_{\ell}^{2})}{4} \left[ |A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left( A_{\perp}^{L} A_{\perp}^{R^{*}} + A_{\parallel}^{L} A_{\parallel}^{R^{*}} \right)$$

$$J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[ |A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R^{*}}) \right] + \beta_{\ell}^{2} |A_{S}|^{2}$$

$$J_{5} = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_{0}^{L} A_{\perp}^{L^{*}} - A_{0}^{R} A_{\perp}^{R^{*}}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L} A_{S}^{*} + A_{\parallel}^{R^{*}} A_{S}) \right]$$

$$P-wave$$

$$C_{P,P'} \text{ contribution inside } A_{t}$$

 $m_{\ell} \neq 0$  introduces extra amplitudes  $A_t^{(')}$  + breaks symmetries

### Definitions of $J_i, \tilde{J}_i$ (examples):

$$J_{1s} = \frac{(2+\beta_{\ell}^{2})}{4} \left[ |A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left( A_{\perp}^{L} A_{\perp}^{R*} + A_{\parallel}^{L} A_{\parallel}^{R*} \right)$$

$$J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[ |A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R*}) \right] + \beta_{\ell}^{2} |A_{S}|^{2}$$

$$J_{5} = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_{0}^{L} A_{\perp}^{L*} - A_{0}^{R} A_{\perp}^{R*}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L} A_{S}^{*} + A_{\parallel}^{R*} A_{S}) \right]$$

$$P$$
-wave

 $m_{\ell} \neq 0$  introduces extra amplitudes  $A_t^{(\prime)}$  + breaks symmetries

$$\begin{split} \tilde{J}_{1a}^{c} &= \frac{3}{8} \left[ |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} + (1 - \beta^{2}) \left( |A_{t}^{\prime}|^{2} + 2\operatorname{Re} \left[ A_{0}^{\prime L} A_{0}^{\prime R*} \right] \right) \right] |BW_{S}|^{2} \\ \tilde{J}_{2a}^{c} &= -\frac{3}{8} \beta^{2} \left( |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} \right) |BW_{S}|^{2} = -\frac{3}{8} \beta^{2} |n_{S}|^{2} \\ \tilde{J}_{5} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \operatorname{Re} \left[ (A_{0}^{\prime L} A_{\perp}^{L*} - A_{0}^{\prime R} A_{\perp}^{R*}) BW_{S} BW_{P}^{*} \right] = \frac{3}{2} \sqrt{\frac{3}{2}} \beta [\operatorname{Re}(n_{\perp}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) - \operatorname{Im}(n_{\perp}^{\dagger} n_{S}^{\prime}) \operatorname{Im}(BW_{S} BW_{P}^{*})] \\ \end{split}$$

Definitions of  $J_i, \tilde{J}_i$  (examples):

$$J_{1s} = \frac{(2+\beta_{\ell}^{2})}{4} \left[ |A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left( A_{\perp}^{L} A_{\perp}^{R^{*}} + A_{\parallel}^{L} A_{\parallel}^{R^{*}} \right)$$

$$J_{1c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2} + \frac{4m_{\ell}^{2}}{q^{2}} \left[ |A_{t}|^{2} + 2\operatorname{Re}(A_{0}^{L} A_{0}^{R^{*}}) \right] + \beta_{\ell}^{2} |A_{S}|^{2}$$

$$J_{5} = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_{0}^{L} A_{\perp}^{L^{*}} - A_{0}^{R} A_{\perp}^{R^{*}}) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L} A_{S}^{*} + A_{\parallel}^{R^{*}} A_{S}) \right]$$

$$P$$
-wave

 $m_{\ell} \neq 0$  introduces extra amplitudes  $A_t^{(\prime)}$  + breaks symmetries

$$\begin{split} \tilde{J}_{1a}^{c} &= \frac{3}{8} \left[ |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} + (1 - \beta^{2}) \left( |A_{t}^{\prime}|^{2} + 2\operatorname{Re} \left[ A_{0}^{\prime L} A_{0}^{\prime R*} \right] \right) \right] |BW_{S}|^{2} \\ \tilde{J}_{2a}^{c} &= -\frac{3}{8} \beta^{2} \left( |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} \right) |BW_{S}|^{2} = -\frac{3}{8} \beta^{2} |n_{S}|^{2} \\ \tilde{J}_{5} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \operatorname{Re} \left[ (A_{0}^{\prime L} A_{\perp}^{L*} - A_{0}^{\prime R} A_{\perp}^{R*}) BW_{S} BW_{P}^{*} \right] = \frac{3}{2} \sqrt{\frac{3}{2}} \beta \left[ \operatorname{Re}(n_{\perp}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) - \operatorname{Im}(n_{\perp}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*}) \right] \\ \end{split}$$

 $F_S \propto |n_S|^2$  needs to be extracted from  $\tilde{J}_{2a}^c$  if  $m_\ell \neq 0$  !!

Writing  $\tilde{J}_i$  in terms of  $n_i$  + making mass dependence in BW explicit

Take BW as external input to disentangle Re[], Im[]

extra d.o.f. from the splitting of  $\tilde{J}_i$ 

$$\begin{split} S_{S1}^{r} &= 2\sqrt{3} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Re}(n_{0}^{\dagger}n_{S}), \quad S_{S1}^{i} = 2\sqrt{3} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Im}(n_{0}^{\dagger}n_{S}^{'}), \\ S_{S2}^{r} &= \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Re}(n_{\parallel}^{\dagger}n_{S}), \quad S_{S2}^{i} = \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Im}(n_{\parallel}^{\dagger}n_{S}^{'}), \\ S_{S3}^{r} &= 2\sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta \operatorname{Re}(n_{\perp}^{\dagger}n_{S}), \quad S_{S3}^{i} = 2\sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta \operatorname{Im}(n_{\parallel}^{\dagger}n_{S}^{'}), \\ S_{S4}^{r} &= 2\sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta \operatorname{Re}(n_{\parallel}^{\dagger}n_{S}^{'}), \quad S_{S4}^{i} = 2\sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta \operatorname{Im}(n_{\parallel}^{\dagger}n_{S}), \\ S_{S5}^{r} &= \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Re}(n_{\parallel}^{\dagger}n_{S}^{'}), \quad S_{S5}^{i} &= \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Im}(n_{\parallel}^{\dagger}n_{S}), \\ S_{S5}^{r} &= \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Re}(n_{\perp}^{\dagger}n_{S}^{'}), \quad S_{S5}^{i} &= \sqrt{\frac{3}{2}} \frac{1}{\Gamma_{full}^{'}} \beta^{2} \operatorname{Im}(n_{\parallel}^{\dagger}n_{S}), \end{split}$$

In massive case  $S^{r,i}_{S1}$  defined through  $\tilde{J}^c_{2b}$  because  $\tilde{J}^c_{1b} 
eq \tilde{J}^c_{2b}$ 

Notice different products  $n_0^{\dagger} n_S^{\phantom{\dagger}}$  VS  $n_0^{\dagger} n_S^{\prime}$ 



**Complex** interference terms  $BW_S BW_P^*$  give rise to **new S-wave** observables for Real and Imaginary parts of the  $\tilde{J}_i$  using the full  $m_{K\pi}$  lineshape

Neglecting Imaginary interference observables  $S_{Si}$  could hide missing information so they **must be considered** 

Angular distribution (P-wave) in terms of optimised observables:

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \, d\vec{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \bigg[ \hat{F}_T M_1 \sin^2 \theta_K + \hat{F}_L M_2 \cos^2 \theta_K + (\frac{1}{4} \hat{F}_T \sin^2 \theta_K - \hat{F}_L \cos^2 \theta_K) \cos 2\theta_l \\ + \frac{1}{2} P_1 \hat{F}_T \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + \sqrt{\hat{F}_T \hat{F}_L} \left( \frac{1}{2} P_4' \sin 2\theta_K \sin 2\theta_l \cos \phi + P_5' \sin 2\theta_K \sin \theta_l \cos \phi \right) \\ + 2 P_2 \hat{F}_T \sin^2 \theta_K \cos \theta_l - \sqrt{\hat{F}_T \hat{F}_L} \left( P_6' \sin 2\theta_K \sin \theta_l \sin \phi + \frac{1}{2} P_8' \sin 2\theta_K \sin 2\theta_l \sin 2\theta_l \sin \phi \right) \\ - P_3 \hat{F}_T \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$$

Angular distribution (P-wave) in terms of optimised observables:

$$\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2 \, d\vec{\Omega}} \bigg|_{\mathrm{P}} = \frac{9}{32\pi} \bigg[ \hat{F}_T M_1 \sin^2 \theta_K + \hat{F}_L M_2 \cos^2 \theta_K + (\frac{1}{4} \hat{F}_T \sin^2 \theta_K - \hat{F}_L \cos^2 \theta_K) \cos 2\theta_l \\ + \frac{1}{2} P_1 \hat{F}_T \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + \sqrt{\hat{F}_T \hat{F}_L} \left( \frac{1}{2} P_4' \sin 2\theta_K \sin 2\theta_l \cos \phi + P_5' \sin 2\theta_K \sin \theta_l \cos \phi \right) \\ + 2 P_2 \hat{F}_T \sin^2 \theta_K \cos \theta_l - \sqrt{\hat{F}_T \hat{F}_L} \left( P_6' \sin 2\theta_K \sin \theta_l \sin \phi + \frac{1}{2} P_8' \sin 2\theta_K \sin 2\theta_l \sin 2\theta_l \sin \phi \right) \\ - P_3 \hat{F}_T \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$$

$$n_c - n_{rel} = 2n_A - n_{sym}$$

Massless case 
$$(m_{\ell} = 0)$$

P-wave: 
$$\frac{d\Gamma}{dq^2}$$
 + 7  $P_i$  +  $F_L$  = 9 observables

S-wave:  $5 S_i^{\text{Re}} + 5 S_i^{\text{Im}} + F_S = 11$  observables

**Total:** 19 + 
$$\left(\frac{d\Gamma}{dq^2} = 1\right)$$
 observables

Experimentally 
$$\rightarrow \frac{d\Gamma}{dq^2} = 1$$

14 d.o.f.  $\equiv$  6 non-trivial relations



$$n_{c} - n_{rel} = 2n_{A} - n_{sym}$$
Massless case  $(m_{\ell} = 0)$ 
  
P-wave:  $\frac{d\Gamma}{dq^{2}} + 7P_{i} + F_{L} = 9$  observables
  
Experimentally  $\rightarrow \frac{d\Gamma}{dq^{2}} = 1$ 
  
S-wave:  $5S_{i}^{\text{Re}} + 5S_{i}^{\text{Im}} + F_{S} = 11$  observables
  
Total:  $19 + \left(\frac{d\Gamma}{dq^{2}} = 1\right)$  observables
  
 $14 \text{ d.o.f.} \equiv 6 \text{ non-trivial relations}$ 

$$\mathcal{O}_{m_{\ell}=0} = \left\{ d\Gamma/dq^2, F_L, P_1, P_2, P_3, P'_4, P'_5, P'_6, P'_8, F_S, S^r_{S1}, S^r_{S2}, S^r_{S3}, S^r_{S4}, S^r_{S5}, S^i_{S1}, S^i_{S2}, S^i_{S3}, S^i_{S4}, S^i_{S3}, S^i_{S4}, S^i_{S5} \right\}$$

"Basis" of 20 obs is redundant  $\rightarrow$  6 non-trivial relations  $\rightarrow$  14 indep. obs

$$n_c - n_{rel} = 2n_A - n_{sym}$$

Massive case 
$$(m_{\ell} \neq 0)$$

P-wave: 
$$\frac{d\Gamma}{dq^2}$$
 + 7  $P_i$  +  $F_L$  +  $M_{1,2}$  = 11 observables

Experimentally 
$$\rightarrow \frac{d\Gamma}{dq^2} = 1$$

**S-wave:**  $5 S_i^{\text{Re}} + 5 S_i^{\text{Im}} + F_S + M'_{3,4,5} = 14$  observables

Total: 24 + 
$$\left(\frac{d\Gamma}{dq^2} = 1\right)$$
 observables

18 d.o.f.  $\equiv$  7 non-trivial relations



$$n_c - n_{rel} = 2n_A - n_{sym}$$

 $\lambda \Gamma$ 

Massive case  $(m_{\ell} \neq 0)$ 

P-wave: 
$$\frac{dI}{dq^2} + 7P_i + F_L + M_{1,2} = 11$$
 observables  
Experimentally  $\rightarrow \frac{d\Gamma}{dq^2} = 1$   
S-wave:  $5S_i^{\text{Re}} + 5S_i^{\text{Im}} + F_S + M'_{3,4,5} = 14$  observables  
Total:  $24 + \left(\frac{d\Gamma}{dq^2} = 1\right)$  observables  
Is d.o.f.  $\equiv 7$  non-trivial relations

$$\mathcal{O}_{m_{\neq}=0} = \left\{ d\Gamma/dq^2, M_1, M_2, F_L, P_1, P_2, P_3, P_4', P_5', P_6', P_8', M_3', M_4', M_5', F_S, S_{S1}^r, S_{S2}^r, S_{S3}^r, S_{S4}^r, S_{S5}^r, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S1}^i, S_{S1}^i, S_{S2}^i, S_{S1}^i, S_{S1}^i$$

"Basis" of 25 obs is redundant  $\rightarrow$  7 non-trivial relations  $\rightarrow$  18 indep. obs

### Predictions of $M_2$



 $M_2$  potentially sensitive to pseudoscalar ( $C_P$ ) & scalar ( $C_S$ ) NP contributions but very insensitive to  $C_7^{\rm NP}$ ,  $C_{9u}^{\rm NP}$ 



Reduced sensitivity to  $C_S$ , only for extreme values of  $C_P = 0.28 (P = -0.97)$  there is some disentangling between NP scenarios albeit high precision required

### **Example of new relations**

Since  $n_{\parallel}, n_{\perp}$  span space for complex 2D vectors, we can contract other  $n_i$  with them

E.g.

**Starting point:** 
$$|n_S|^2 = a_S(n_S^{\dagger}n_{\parallel}) + b_S(n_S^{\dagger}n_{\perp})$$

#### Some <sup>×</sup><sup>#</sup>@<sup>×</sup><sub>↓</sub>! later...

$$0 = -3\beta^{4}F_{S}J_{6s}^{2} + \Gamma_{full}'[-8(2J_{2s}+J_{3})S_{S2}^{r\,2} - 16J_{9}S_{S2}^{r}S_{S5}^{i} + 8(-2J_{2s}+J_{3})S_{S5}^{i\,2}] + 2\beta^{2}(6F_{S}(4J_{2s}^{2} - J_{3}^{2} - J_{9}^{2}) + \Gamma_{full}'[(-2J_{2s}+J_{3})S_{S3}^{r\,2} + 2J_{9}S_{S3}^{r}S_{S4}^{i} - (2J_{2s}+J_{3})S_{S4}^{i\,2} + 2J_{6s}(S_{S2}^{r}S_{S3}^{r} + S_{S4}^{i}S_{S5}^{i})])$$

### **Example of new relations**

Since  $n_{\parallel}, n_{\perp}$  span space for complex 2D vectors, we can contract other  $n_i$  with them

E.g.

$$n_{\perp}^{\dagger}n_{S}' = a_{S}'(n_{\perp}^{\dagger}n_{\parallel}) + b_{S}'|n_{\perp}|^{2} \longrightarrow a_{S}' = \frac{(n_{\parallel}^{\dagger}n_{S}')|n_{\perp}|^{2} - (n_{\perp}^{\dagger}n_{S}')(n_{\parallel}^{\dagger}n_{\perp})}{|n_{\parallel}|^{2}|n_{\perp}|^{2} - |n_{\perp}^{\dagger}n_{\parallel}|^{2}} \longrightarrow a_{S}' = \frac{(n_{\parallel}^{\dagger}n_{S}')(n_{\perp}^{\dagger}n_{\parallel})|^{2} - |n_{\perp}^{\dagger}n_{\parallel}|^{2}}{|n_{\parallel}^{\dagger}n_{\perp}'|^{2} - |n_{\parallel}^{\dagger}n_{\parallel}|^{2}}$$

Starting point: 
$$|n_S|^2 = a_S(n_S^{\dagger}n_{\parallel}) + b_S(n_S^{\dagger}n_{\perp})$$

Massive relations simplify to massless once  $\beta \rightarrow 1$ 

Some **¾**#@**X**!**₩** later...

$$0 = -3\beta^{4}F_{S}J_{6s}^{2} + \Gamma_{full}'[-8(2J_{2s} + J_{3})S_{S2}^{r\,2} - 16J_{9}S_{S2}^{r}S_{S5}^{i} + 8(-2J_{2s} + J_{3})S_{S5}^{i\,2}] + 2\beta^{2}(6F_{S}(4J_{2s}^{2} - J_{3}^{2} - J_{9}^{2}) + \Gamma_{full}'[(-2J_{2s} + J_{3})S_{S3}^{r\,2} + 2J_{9}S_{S3}^{r}S_{S4}^{i} - (2J_{2s} + J_{3})S_{S4}^{i\,2} + 2J_{6s}(S_{S2}^{r}S_{S3}^{r} + S_{S4}^{i}S_{S5}^{i})])$$

All relations have been translated in terms of optimised observables

Solving for  $S_{S2}^r$  & imposing real solution:

$$x = 1 - P_1^2 - 4\beta^2 P_2^2 - 4P_3^2$$

$$\begin{split} 0 &\leq \Delta(S_{S2}^{r}) = -\beta^{2}x(S_{S3}^{r})^{2} - 4x(S_{55}^{i})^{2} - \beta^{2}(2P_{3}S_{S3}^{r} + (1+P_{1})S_{S4}^{i} - 4P_{2}S_{55}^{i})^{2} \\ &+ 3\beta^{4}xF_{S}(1-F_{S})F_{T}(1+P_{1}) \end{split} \\ \\ \text{Negative terms individually < Positive term Bounds!} \\ \hline \text{Insensitive to } q^{2} + \text{safe from details of FFs} \end{aligned} \\ \\ |S_{52}^{r}| &\leq \beta^{2}\sqrt{\frac{3}{4}}F_{S}(1-F_{S})F_{T}(1-P_{1}) \quad |S_{53}^{r}| \leq \beta\sqrt{3F_{S}(1-F_{S})F_{T}(1+P_{1})} \\ |S_{54}^{i}| &\leq \beta\sqrt{3F_{S}(1-F_{S})F_{T}(1-P_{1})} \quad |S_{55}^{i}| \leq \beta^{2}\sqrt{\frac{3}{4}}F_{S}(1-F_{S})F_{T}(1+P_{1}) \\ \\ |S_{54}^{i}| &\leq \beta\sqrt{3F_{S}(1-F_{S})F_{T}(1-P_{1})} \quad |S_{55}^{i}| \leq \beta^{2}\sqrt{\frac{3}{4}}F_{S}(1-F_{S})F_{T}(1+P_{1}) \\ \\ \text{Same strategy for other relations} \quad |S_{52}^{r,i}| \leq \beta^{2}\frac{k_{1}}{2} \quad |S_{53}^{r,i}| \leq \beta k_{2} \quad |S_{54}^{r,i}| \leq \beta k_{1} \quad |S_{55}^{r,i}| \leq \beta^{2}\frac{k_{2}}{2} \\ \\ \text{More information from relations} \quad S_{54}^{r} = \frac{2}{1+P_{1}} \left( 2P_{2}S_{55}^{r} \pm \frac{1}{\beta}\sqrt{x(\beta^{4}\frac{k_{2}^{2}}{4} - (S_{53}^{r})^{2}} \right) \\ \\ \text{Can be tested experimentally} \\ \end{aligned}$$







Very preliminary plots 🙂



#### Independent information must be the same

Out of these bases there are only 14 (18) independent observables, so we find 3 (4) new relations for  $m_{\ell} = 0$  ( $m_{\ell} \neq 0$ )

Relations provide **bounds** for interference observables  $S_{Si}^{r,i}$ 

If no RHC or particular combination 
$$C_{7'} \simeq -\frac{C_7^{\text{eff}}}{C_{10} - C_9^{\text{eff}}}(C_{10'} - C_{9'})$$

$$P_2^{\max}(q_{max}^2) = \frac{1}{2\beta}$$
  
when  $n_{\perp}(q_{max}^2) = n_{\parallel}(q_{max}^2)$ 

• Several observables are 0 at 
$$q_{max}^2 = 2.02 \,\text{GeV}^2$$
 where  $n_{\perp}(q_{max}^2) = n_{\parallel}(q_{max}^2)$ :

$$X_{1} = P_{1}$$

$$X_{2} = \beta P_{5}' - P_{4}'$$

$$X_{3} = \beta S_{S4}^{r} - 2S_{S5}^{r}$$

$$X_{4} = \beta S_{S3}^{r} - 2S_{S2}^{r}$$

$$Y_{1} = P_{3}$$

$$Y_{2} = \beta P_{6}' - P_{8}'$$

$$Y_{3} = \beta S_{S4}^{i} - 2S_{S5}^{i}$$

$$Y_{4} = \beta S_{S3}^{i} - 2S_{S2}^{i}$$

Completely **new** strategy to determine position of  $q_{max}^2$  *i.e.* **0 of observables** 

Correlated analysis to all  $X_i \& Y_i$  observables with more precision

Applies when:

- No or tiny RHC
- RHC fulfill combination above

If no RHC or particular combination 
$$C_{7'} \simeq -\frac{C_7^{\text{eff}}}{C_{10} - C_9^{\text{eff}}}(C_{10'} - C_{9'})$$

$$P_2^{\max}(q_{max}^2) = \frac{1}{2\beta}$$
  
when  $n_{\perp}(q_{max}^2) = n_{\parallel}(q_{max}^2)$ 

What if **sizeable** RHC?

• Several observables are 0 at  $q_{max}^2 = 2.02 \,\text{GeV}^2$  where  $n_{\perp}(q_{max}^2) = n_{\parallel}(q_{max}^2)$ :

 $X_{1} = P_{1}$   $X_{2} = \beta P_{5}' - P_{4}'$   $X_{3} = \beta S_{S4}^{r} - 2S_{S5}^{r}$   $X_{4} = \beta S_{S3}^{r} - 2S_{S2}^{r}$   $Y_{1} = P_{3}$   $Y_{2} = \beta P_{6}' - P_{8}'$   $Y_{3} = \beta S_{S4}^{i} - 2S_{S5}^{i}$   $Y_{4} = \beta S_{S3}^{i} - 2S_{S2}^{i}$ 

Completely **new** strategy to determine position of  $q_{max}^2$  *i.e.* **0 of observables** 

Correlated analysis to all  $X_i \& Y_i$  observables with more precision

Applies when:

- No or tiny RHC
- RHC fulfill combination above



$$Z_{1} = \beta \sqrt{\frac{1-P_{1}}{1+P_{1}}} P_{5}' - P_{4}'$$

$$Z_{2} = \beta \sqrt{\frac{1+P_{1}}{1-P_{1}}} S_{S4}^{r} - 2S_{S5}^{r}$$

$$Z_{3} = \beta \sqrt{\frac{1-P_{1}}{1+P_{1}}} S_{S3}^{r} - 2S_{S2}^{r}$$

**Caveat:** quadratically suppressed terms  $\mathcal{O}(P_3 S_{Si}^{r,i}, P_3^2)$ are neglected

**Correlated analysis still possible** even in presence of arbitrary large RHC

Considering very small  $q^2$ -bins

Standard Model



Considering very small  $q^2$ —bins



Considering very small  $q^2$ —bins



Shift of position of 0 of  $Z_1$  (coincides with maximum of  $P_2$ ) compared to  $X_2$ 

### Local analysis of zeroes

#### Local analysis in bin $q^2 \in [1.8, 2.5]$ GeV<sup>2</sup>

We parametrize **new observables** in terms of NP contributions in relevant Wilson Coefficients  $\left\{C_{9\mu}^{\text{NP}}, C_{10\mu}^{\text{NP}}, C_{9'\mu}, C_{10'\mu}\right\}$  and study them **in significant NP scenarios** from Global Fits





*Next step:* try to get some info about hadronic contributions (WIP)

### **Decision Tree from Zeroes**





Correlated zeroes of different observables give us new local information

Link between local fits to zeroes and global picture through these observables

Zeroes can provide a way of disentangling NP scenarios from global fits

# Experiment

### (Pseudo-) Experiment setup I

These plots are aimed at LHCb Run 1 and Run 2 (with some upgrade consideration)

- Minimal and well separated background
- Will equally apply to Belle II with statistics
  - Perhaps with a simpler angular acceptance

Setup

- Benchmark is expected LHCb Run 1 + Run 2 yield (scaled from published results)
- Representative background product of Chebychev polynomials + exponential  $(m_B)$
- Representative acceptance function on signal to mode effects of selection
- $0.75 < m_{K\pi} < 1.2 \,\text{GeV}$ 
  - Wide  $m_{K\pi}$  window for maximal S-wave and interference control
  - Larger contamination of other P/D-wave
  - Larger contamination of backgrounds

### (Pseudo-) Experiment setup II

The S-wave lineshape you choose matters

- Minimal sensitivity to it in the fit ( ~ % contribution in  $\mathcal{O}(10^3)$  events)
- Normalise the  $|\mathscr{A}(m_{K\pi})|^2$  P- and S-wave lineshapes over  $m_{K\pi}$  window
  - Total rate in the window doesn't depend on  $m_{K\pi}$
- $m_{K\pi}$  window changes meaning of S-wave and interference observables
- Choice of  $m_{K\pi}$  lineshape changes S-wave normalisation changes observables
- See K. Petridis talk.



Run 1000 experiments for the various it configurations

- In all cases the fit converges reliably
- We examine biases and error estimation

### **Massless interference observables**

Can we fit the  $\mathscr{R}$  and  $\mathscr{I}$  part of  $SS_i$ ?



### **Massless interference observables**

Can we fit the optimised observables?



Marcel Algueró & Mark Smith

P/S-wave interference observables

### **Massless interference observables**

Estimated precisions for  $4.0 < q^2 < 6.0 \,\mathrm{GeV^2}$ 



### **Massive observables: S-wave**

$$M'_3 = \frac{-\beta^2 \tilde{S}^c_{1a} - \tilde{S}^c_{2a}}{\tilde{S}^c_{2a}}$$

- Essentially a ratio not ideal experimentally
- Not feasible with Run 2 statistics; still struggle with estimated Run 5,  $300 \, \text{fb}^{-1}$



### **Massive observables: S-wave**

$$M'_{4} = \frac{-\beta^{2}\tilde{S}^{c,re}_{1b} - \tilde{S}^{c,re}_{2b}}{\sqrt{(1 - 2\tilde{S}^{c}_{1a} + \frac{2}{3}\tilde{S}^{c}_{2a})S_{2c}\tilde{S}^{c}_{2a}}} \qquad \qquad M'_{5} = \frac{-\beta^{2}\tilde{S}^{c,im}_{1b} - \tilde{S}^{c,im}_{2b}}{\sqrt{(1 - 2\tilde{S}^{c}_{1a} + \frac{2}{3}\tilde{S}^{c}_{2a})S_{2c}\tilde{S}^{c}_{2a}}}$$

- Constructed more like the P' P-wave optimised observables
- Could be feasibly with Run 2 statistics



### **Massive observables: S-wave**



### Summary

#### Theory

- Interference observables S<sub>Si</sub> were not considered and for a fit to decay rate they have to be included
- Splitting P-S wave interference terms in Re & Im allows building new observables
- P-S wave interference obs provide more precise determination of position of zero of observables X<sub>i</sub>, Y<sub>i</sub>, Z<sub>i</sub> from correlated analysis
- Local analysis of bin [1.8,2.5] can help disentangle NP scenarios from Global fits

#### Experiment

- With the data in hand LHCb can measure all the P/S-wave interference observables
- ► Can also measure the theory optimised  $PS_i$  in all  $q^2$  bins
- For the lowest  $q^2$  bin (0.1 <  $q^2$  < 0.98 GeV<sup>2</sup>) the extra optimised interference observables,
  - $M'_4, M'_5$  might be measured with the current
    - Certainly feasible with Run 3 and Run 4
- To fit the remaining optimised S-wave observable  $M'_4$  will likely require Run 5 statistics

## Thanks!

# Thanks!



## **BACKUP SLIDES**

Definitions of  $J_i, \tilde{J}_i$ : **P-wave**  $J_{1s} = \frac{(2+\beta_{\ell}^2)}{4} \left[ |A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right] + \frac{4m_{\ell}^2}{a^2} \operatorname{Re} \left( A_{\perp}^L A_{\perp}^{R^*} + A_{\parallel}^L A_{\parallel}^{R^*} \right) ,$  $J_{1c} = |A_0^L|^2 + |A_0^R|^2 + \frac{4m_{\ell}^2}{\sigma^2} \left[ |A_t|^2 + 2\text{Re}(A_0^L A_0^{R^*}) \right] + \beta_{\ell}^2 |A_S|^2,$  $J_{2s} = \frac{\beta_{\ell}^2}{4} \left[ |A_{\perp}^L|^2 + |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 + |A_{\parallel}^R|^2 \right], \qquad J_{2c} = -\beta_{\ell}^2 \left[ |A_0^L|^2 + |A_0^R|^2 \right],$  $J_3 = \frac{1}{2}\beta_{\ell}^2 \left[ |A_{\perp}^L|^2 - |A_{\parallel}^L|^2 + |A_{\perp}^R|^2 - |A_{\parallel}^R|^2 \right], \qquad J_4 = \frac{1}{\sqrt{2}}\beta_{\ell}^2 \left[ \operatorname{Re}(A_0^L A_{\parallel}^{L^*} + A_0^R A_{\parallel}^{R^*}) \right],$  $J_5 = \sqrt{2}\beta_{\ell} \left[ \operatorname{Re}(A_0^L A_{\perp}^{L^*} - A_0^R A_{\perp}^{R^*}) - \frac{m_{\ell}}{\sqrt{a^2}} \operatorname{Re}(A_{\parallel}^L A_S^* + A_{\parallel}^{R^*} A_S) \right],$  $J_{6c} = 4\beta_{\ell} \frac{m_{\ell}}{\sqrt{a^2}} \operatorname{Re}(A_0^L A_S^* + A_0^{R^*} A_S),$  $J_{6s} = 2\beta_{\ell} \left[ \text{Re}(A_{\parallel}^{L}A_{\perp}^{L^{*}} - A_{\parallel}^{R}A_{\perp}^{R^{*}}) \right] ,$  $J_7 = \sqrt{2}\beta_{\ell} \left[ \operatorname{Im}(A_0^L A_{\parallel}^{L^*} - A_0^R A_{\parallel}^{R^*}) + \frac{m_{\ell}}{\sqrt{a^2}} \operatorname{Im}(A_{\perp}^L A_S^* - A_{\perp}^{R^*} A_S)) \right],$  $J_8 = \frac{1}{\sqrt{2}} \beta_{\ell}^2 \left[ \text{Im}(A_0^L A_{\perp}^{L^*} + A_0^R A_{\perp}^{R^*}) \right] ,$  $J_9 = \beta_\ell^2 \left| \operatorname{Im}(A_{\parallel}^{L^*} A_{\perp}^L + A_{\parallel}^{R^*} A_{\perp}^R) \right|$ 

Definitions of  $J_i, \widetilde{J}_i$  :

S-wave

$$\begin{split} \tilde{J}_{1a}^{c} &= \frac{3}{8} \left[ |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} + (1 - \beta^{2}) \left( |A_{t}^{\prime}|^{2} + 2\text{Re} \left[ A_{0}^{\prime L} A_{0}^{\prime R*} \right] \right) \right] |BW_{S}|^{2}, \\ \tilde{J}_{2a}^{c} &= -\frac{3}{8} \beta^{2} \left( |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} \right) |BW_{S}|^{2} = -\frac{3}{8} \beta^{2} |n_{S}|^{2}, \\ \tilde{J}_{1b}^{c} &= \frac{3}{4} \sqrt{3} \text{Re} \left[ \left( A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*} + (1 - \beta^{2}) \left( A_{0}^{\prime L} A_{0}^{R*} + A_{0}^{L} A_{0}^{\prime R*} + A_{t}^{\prime L} A_{t}^{*} \right) \right) BW_{S} BW_{P}^{*} \right] \\ &= \tilde{J}_{1b}^{c*} \text{Re}(BW_{S} BW_{P}^{*}) - \tilde{J}_{1b}^{ci} \text{Im}(BW_{S} BW_{P}^{*}) \\ \tilde{J}_{2b}^{c} &= -\frac{3}{4} \sqrt{3} \beta^{2} \text{Re} \left[ \left( A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \tilde{J}_{2b}^{c*} \text{Re}(BW_{S} BW_{P}^{*}) - \tilde{J}_{2b}^{ci} \text{Im}(BW_{S} BW_{P}^{*}) \\ &= -\frac{3}{4} \sqrt{3} \beta^{2} [\text{Re}(n_{0}^{\dagger} n_{S}) \text{Re}(BW_{S} BW_{P}^{*}) - \text{Im}(n_{0}^{\dagger} n_{S}') \text{Im}(BW_{S} BW_{P}^{*})], \\ \tilde{J}_{4} &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \text{Re} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} + A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] = \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} [\text{Re}(n_{\parallel}^{\dagger} n_{S}) \text{Re}(BW_{S} BW_{P}^{*}) - \text{Im}(n_{\parallel}^{\dagger} n_{S}') \text{Im}(BW_{S} BW_{P}^{*})], \\ \tilde{J}_{5} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \text{Re} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} - A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] = \frac{3}{2} \sqrt{\frac{3}{2}} \beta [\text{Re}(n_{\parallel}^{\dagger} n_{S}) \text{Re}(BW_{S} BW_{P}^{*}) - \text{Im}(n_{\parallel}^{\dagger} n_{S}') \text{Im}(BW_{S} BW_{P}^{*})], \\ \tilde{J}_{7} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \text{Im} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} - A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] = \frac{3}{2} \sqrt{\frac{3}{2}} \beta [\text{Im}(n_{\parallel}^{\dagger} n_{S}) \text{Re}(BW_{S} BW_{P}^{*}) + \text{Re}(n_{\parallel}^{\dagger} n_{S}') \text{Im}(BW_{S} BW_{P}^{*})], \\ \tilde{J}_{8} &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \text{Im} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} + A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] = \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} [\text{Im}(n_{\parallel}^{\dagger} n_{S}) \text{Re}(BW_{S} BW_{P}^{*}) + \text{Re}(n_{\parallel}^{\dagger} n_{S}') \text{Im}(BW_{S} BW_{P}^{*})], \\ \tilde{J}_{8} &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \text{Im} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} + A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] = \frac{3}{4} \sqrt{\frac{3$$

Definitions of  $J_i, { ilde J}_i$  :

S-wave

$$\begin{split} \tilde{J}_{1a}^{c} &= \frac{3}{8} \left[ |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} + (1 - \beta^{2}) \left( |A_{t}^{\prime}|^{2} + 2\operatorname{Re} \left[ A_{0}^{\prime L} A_{0}^{\prime R*} \right] \right) \right] |BW_{S}|^{2}, \\ \tilde{J}_{2a}^{c} &= -\frac{3}{8} \beta^{2} \left( |A_{0}^{\prime L}|^{2} + |A_{0}^{\prime R}|^{2} \right) |BW_{S}|^{2} = -\frac{3}{8} \beta^{2} |n_{S}|^{2}, \\ \tilde{J}_{1b}^{c} &= \frac{3}{4} \sqrt{3} \operatorname{Re} \left[ \left( A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*} + (1 - \beta^{2}) \left( A_{0}^{\prime L} A_{0}^{R*} + A_{0}^{L} A_{0}^{\prime R*} + A_{t}^{\prime L} A_{t}^{*} \right) \right] BW_{S} BW_{P}^{*} \\ &= \tilde{J}_{1b}^{cr} \operatorname{Re}(BW_{S} BW_{P}^{*}) - \tilde{J}_{1b}^{ci} \operatorname{Im}(BW_{S} BW_{P}^{*}) \\ \tilde{J}_{2b}^{c} &= -\frac{3}{4} \sqrt{3} \beta^{2} \operatorname{Re} \left[ \left( A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \tilde{J}_{2b}^{cr} \operatorname{Re}(BW_{S} BW_{P}^{*}) - \tilde{J}_{2b}^{ci} \operatorname{Im}(BW_{S} BW_{P}^{*}) \\ &= -\frac{3}{4} \sqrt{3} \beta^{2} \operatorname{Re} \left[ \left( A_{0}^{\prime L} A_{0}^{L*} + A_{0}^{\prime R} A_{0}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= -\frac{3}{4} \sqrt{3} \beta^{2} \left[ \operatorname{Re}(n_{0}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) - \operatorname{Im}(n_{0}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*}) \right], \\ \tilde{J}_{4} &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \operatorname{Re} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} + A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \left[ \operatorname{Re}(n_{\parallel}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) - \operatorname{Im}(n_{\parallel}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*}) \right], \\ \tilde{J}_{5} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \operatorname{Re} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} - A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \left[ \operatorname{Im}(n_{\parallel}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) - \operatorname{Im}(n_{\parallel}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*}) \right], \\ \tilde{J}_{7} &= \frac{3}{2} \sqrt{\frac{3}{2}} \beta \operatorname{Im} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} - A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \left[ \operatorname{Im}(n_{\parallel}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) + \operatorname{Re}(n_{\parallel}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*}) \right], \\ \tilde{J}_{8} &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \operatorname{Im} \left[ \left( A_{0}^{\prime L} A_{1}^{L*} + A_{0}^{\prime R} A_{1}^{R*} \right) BW_{S} BW_{P}^{*} \right] \\ &= \frac{3}{4} \sqrt{\frac{3}{2}} \beta^{2} \left[ \operatorname{Im}(n_{\parallel}^{\dagger} n_{S}) \operatorname{Re}(BW_{S} BW_{P}^{*}) + \operatorname{Re}(n_{\parallel}^{\dagger} n_{S}') \operatorname{Im}(BW_{S} BW_{P}^{*})$$

#### d.o.f. and new relations among observables



#### d.o.f. and new relations among observables



### Anatomy of $M_1, M_2$



 $BR(B_s \to \mu\mu) \text{ used to constrain possible values of } C_P, C_S \qquad [Fleischer et al. arXiv: 1703.10160]$ From  $R_{B_s \to \mu\mu} = \frac{BR(B_s \to \mu\mu)}{BR^{SM}(B_s \to \mu\mu)} = |S|^2 + |P|^2$ , where  $P = \frac{C_{10}^{SM} + C_{10}^{NP} - C_{10'}}{C_{10}^{SM}} + \frac{m_{B_s}^2}{2m_b m_\mu} \left(\frac{C_P - C_{P'}}{C_{10}^{SM}}\right)$ 

We take the experimental value of  $R_{B_s \rightarrow \mu\mu}$  to determine a  $1\sigma$  region for S, P

### Constraints on S, P



Marcel Algueró & Mark Smith

#### P/S-wave interference observables

### Constraints for $C_P, C_S$

Same constraint but in terms of WC  $C_S$ ,  $C_P$ 



Marcel Algueró & Mark Smith

#### P/S-wave interference observables