$$\Lambda_Q \to \Lambda^{(*)}$$
 form factors

Carla Marin and Stefan Meinel

IPPP Workshop "Beyond the Flavour Anomalies II", 20-22 April 2021

b and c baryon semileptonic form factors from unquenched lattice QCD

Transition	m_Q	<i>a</i> [fm]	m_{π} [MeV]	Reference
$\Lambda_b o \Lambda$	∞	0.083, 0.111	230–360	WD, DL, SM, MW, arXiv:1212.4827/PRD 2013
$\Lambda_b o p$	∞	0.083, 0.111	230–360	WD, DL, SM, MW, arXiv:1306.0446/PRD 2013
$\Lambda_b o p$	phys.	0.083, 0.111	230–360	WD, CL, SM, arXiv:1503.01421/PRD 2015
$\Lambda_b o \Lambda_c$	phys.	0.083, 0.111	230-360	WD, CL, SM, arXiv:1503.01421/PRD 2015
$\Lambda_b o \Lambda$	phys.	0.083, 0.111	230-360	WD, SM, arXiv:1602.01399/PRD 2016
$\Lambda_b o \Lambda^*(1520)$	phys.	0.083, 0.111	300–430	SM, GR, arXiv:2009.09313/PRD 2021
$\Lambda_b o \Lambda_c^*(2595)$	phys.	0.083, 0.111	300–430	SM, GR, arXiv:2103.08775/PRD 2021
$\Lambda_b o \Lambda_c^*(2625)$	phys.	0.083, 0.111	300–430	SM, GR, arXiv:2103.08775/PRD 2021
$\Lambda_c o \Lambda$	phys.	0.083, 0.111, 0.114	140 –360	SM, arXiv:1611.09696/PRL2017
$\Lambda_c o p$	phys.	0.083, 0.111	230–360	SM, arXiv:1712.05783/PRD 2018
$\Xi_c ightarrow \Xi$	phys.	0.080, 0.108	290, 300	QA. Zhang <i>et al.</i> , arXiv:2103.07064
$\Lambda_c o \Lambda^*(1520)$	phys.	0.083, 0.111	300-430	SM, GR, in preparation

WD = W. Detmold, DL = C.-J. D. Lin, SM = S. Meinel, MW = M. Wingate, CL = C. Lehner, GR = G. Rendon

$1 \quad \Lambda_b \to \Lambda$

- $\Lambda_b \rightarrow \Lambda^*(1520)$
- $\Lambda_c \rightarrow \Lambda^*(1520)$

 $\Lambda_b \rightarrow \Lambda$ form factor definitions

$$\begin{split} \langle \Lambda | \bar{s} \gamma^{\mu} b | \Lambda_{b} \rangle &= \bar{u}_{\Lambda} \bigg[f_{0}(q^{2}) (m_{\Lambda_{b}} - m_{\Lambda}) \frac{q^{\mu}}{q^{2}} \\ &+ f_{+}(q^{2}) \frac{m_{\Lambda_{b}} + m_{\Lambda}}{s_{+}} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ f_{\perp}(q^{2}) \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{+}} p'^{\mu} \right) \bigg] u_{\Lambda_{b}}, \\ \langle \Lambda | \bar{s} \gamma^{\mu} \gamma_{5} b | \Lambda_{b} \rangle &= -\bar{u}_{\Lambda} \gamma_{5} \bigg[g_{0}(q^{2}) (m_{\Lambda_{b}} + m_{\Lambda}) \frac{q^{\mu}}{q^{2}} \\ &+ g_{+}(q^{2}) \frac{m_{\Lambda_{b}} - m_{\Lambda}}{s_{-}} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ g_{\perp}(q^{2}) \left(\gamma^{\mu} + \frac{2m_{\Lambda}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}} p'^{\mu} \right) \bigg] u_{\Lambda_{b}}, \\ iq_{\nu} \langle \Lambda | \bar{s} \sigma^{\mu\nu} b | \Lambda_{b} \rangle &= -\bar{u}_{\Lambda} \bigg[h_{+}(q^{2}) \frac{q^{2}}{s_{+}} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ h_{\perp}(q^{2}) (m_{\Lambda_{b}} + m_{\Lambda}) \left(\gamma^{\mu} - \frac{2m_{\Lambda}}{s_{+}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{+}} p'^{\mu} \right) \bigg] u_{\Lambda_{b}}, \\ iq_{\nu} \langle \Lambda | \bar{s} \sigma^{\mu\nu} \gamma_{5} b | \Lambda_{b} \rangle &= -\bar{u}_{\Lambda} \gamma_{5} \bigg[\tilde{h}_{+}(q^{2}) \frac{q^{2}}{s_{-}} \left(p^{\mu} + p'^{\mu} - (m_{\Lambda_{b}}^{2} - m_{\Lambda}^{2}) \frac{q^{\mu}}{q^{2}} \right) \\ &+ \tilde{h}_{\perp}(q^{2}) (m_{\Lambda_{b}} - m_{\Lambda}) \left(\gamma^{\mu} + \frac{2m_{\Lambda}}{s_{-}} p^{\mu} - \frac{2m_{\Lambda_{b}}}{s_{-}} p'^{\mu} \right) \bigg] u_{\Lambda_{b}}, \end{split}$$

where $s_{\pm} = (m_{\Lambda_b} \pm m_{\Lambda})^2 - q^2$ [T. Feldmann and M. W. Y. Yip, arXiv:1111.1844/PRD 2012]

$\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD

[W. Detmold and S. Meinel, arXiv:1602.01399/PRD 2016]

 $\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD

[W. Detmold and S. Meinel, arXiv:1602.01399/PRD 2016]

 $\Lambda_b \rightarrow \Lambda$ form factors from lattice QCD

[W. Detmold and S. Meinel, arXiv:1602.01399/PRD 2016]

Forthcoming improved calculation of $\Lambda_b \rightarrow p, \Lambda, \Lambda_c$ form factors

- Remove data sets with $m_{u,d}^{(val)} < m_{u,d}^{(sea)}$, add three new ensembles to better control finite-volume effects, chiral and continuum extrapolations
- For $\Lambda_b \to \Lambda$: physical $m_s^{(val)}$
- More accurate tuning of charm and bottom actions
- All-mode-averaging for higher statistics
- Better source smearing
- Fully nonperturbative renormalization

$N_s^3 imes N_t$	β	$am_{u,d}^{(sea)}$	$am_{u,d}^{(val)}$	$am_s^{(sea)}$	<i>a</i> (fm)	$m_\pi^{({ m sea})}$ (MeV)	$m_\pi^{(ext{val})}$ (MeV)	Status
$32^{3} \times 64$	2.13	0.005	0.005	0.04	pprox 0.111	pprox 340	≈ 340	done
$24^3 imes 64$	2.13	0.005	0.005	0.04	pprox 0.111	pprox 340	pprox 340	done
$-24^3 \times 64$	2.13	0.005	0.002	0.04	≈ 0.111	≈ 340	≈ 270	
$-24^3 \times 64$	2.13	0.005	0.001	0.04	≈ 0.111	≈ 340	≈ 250	
$48^3 imes 96$	2.13	0.00078	0.00078	0.0362	pprox 0.114	pprox 140	pprox 140	done
$32^{3} \times 64$	2.25	0.006	0.006	0.03	pprox 0.083	pprox 360	pprox 360	done
$32^{3} \times 64$	2.25	0.004	0.004	0.03	pprox 0.083	pprox 300	pprox 300	done
$-32^3 \times 64$	2.25	0.004	0.002	0.03	≈ 0.083	<u> ~ ≈ 300</u>	≈ 230	
$48^3 imes 96$	2.31	0.002144	0.002144	0.02144	pprox 0.073	pprox 230	pprox 230	$\sim 30\%$ done

$1 \quad \Lambda_b o \Lambda$

- $\Lambda_b \rightarrow \Lambda^*(1520)$
- $\Lambda_c \rightarrow \Lambda^*(1520)$

$\Lambda_b \rightarrow \Lambda^*(1520)$

- The phenomenology of $\Lambda_b o \Lambda^*(1520) \mu^+ \mu^-$ was recently studied in
 - S. Descotes-Genon, M. Novoa-Brunet, arXiv:1903.00448/JHEP 2019
 - D. Das, J. Das, arXiv:2003.08366/JHEP 2020
 - Y. Amhis et al., arXiv:2005.09602 [see Carla's part of the talk]
- The form factors have previously been calculated in a quark model
 - L. Mott, W. Roberts, arXiv:1108.6129/IJMPA 2012
- HQET relations including $1/m_b$ effects have been derived in
 - W. Roberts, NPB 389, 549-562 (1993)
 - M. Bordone, arXiv:2101.12028/Symmetry 2021

$\Lambda_b ightarrow \Lambda^*(1520)$ on the lattice

S. Meinel and G. Rendon, arXiv:2009.09313/PRD 2021

We use the narrow-width approximation: we assume that the lowest finite-volume energy level with the correct quantum numbers corresponds to the Λ^* (1520). Even in this approximation, the calculation is substantially more challenging than for $\Lambda_b \rightarrow \Lambda$:

• At nonzero momenta, the irreducible representations of the lattice symmetry groups mix positive and negative parities and also mix $J = \frac{1}{2}$ and $J = \frac{3}{2}$. We must therefore work in the $\Lambda^*(1520)$ rest frame and give momentum to the Λ_b instead. This limits us to near q^2_{max} .

$\Lambda_b ightarrow \Lambda^*(1520)$ on the lattice

- The simplest choices of three-quark interpolating fields with I = 0 and $J^P = \frac{3}{2}^-$ dominantly couple to higher-lying (S = 3/2, L = 0, flavor-SU(3) octet) states. We found it necessary to use an interpolating field with an (S = 1/2, L = 1, flavor-SU(3) singlet) structure obtained using covariant spatial derivatives. This requires additional quark propagators with derivative sources.
- Correlation functions for negative-parity "excited" baryons have even more statistical noise than
 correlation functions for the lightest baryons → need many samples on many gauge configurations

Data sets and hadron masses

We use gauge-field configurations generated by the RBC and UKQCD Collaborations, with 2 + 1 flavors of domain-wall fermions.

Label	$N_s^3 imes N_t$	<i>a</i> [fm]	$m_\pi~[{ m GeV}]$
C01	$24^3 imes 64$	0.1106(3)	0.4312(13)
C005	$24^3 imes 64$	0.1106(3)	0.3400(11)
F004	$32^3 imes 64$	0.0828(3)	0.3030(12)

Label	m_K [GeV]	m_N [GeV]	m_{Λ} [GeV]	m_{Σ} [GeV]	m_{Λ^*} [GeV]	m_{Λ_b} [GeV]
C01	0.5795(19)	1.2647(51)	1.3494(61)	1.3877(61)	1.825(16)	5.793(17)
C005	0.5501(19)	1.1649(58)	1.2659(66)	1.3173(60)	1.740(17)	5.726(17)
F004	0.5361(24)	1.1197(59)	1.2382(54)	1.303(12)	1.757(15)	5.722(23)

 $m_{\Lambda^*} - m_{\Sigma} - m_{\pi}$ ranges from approximately +80 to +150 MeV (physical value: +192 MeV), $m_{\Lambda^*} - m_N - m_K$ ranges from approximately -20 to +100 MeV (physical value: +89 MeV) $\Lambda_b
ightarrow \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_b \to \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_b \to \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_b \rightarrow \Lambda^*(1520) \mu^+ \mu^-$ differential branching fraction

QM = using form factors from [L. Mott, W. Roberts, arXiv:1108.6129/IJMPA 2012]

 $\Lambda_b \to \Lambda^*(1520)\mu^+\mu^-$ and $\Lambda_b \to \Lambda\mu^+\mu^-$ differential branching fractions

 $\Lambda_b \to \Lambda^*(1520) (\to pK^-) \mu^+ \mu^-$ angular observables

See [S. Descotes-Genon, M. Novoa-Brunet, arXiv:1903.00448/JHEP 2019] for definitions. The lepton mass is neglected here.

 $\Lambda_b \rightarrow \Lambda^*(1520) (\rightarrow pK^-) \mu^+ \mu^-$ angular observables

See [S. Descotes-Genon, M. Novoa-Brunet, arXiv:1903.00448/JHEP 2019] for definitions. The lepton mass is neglected here.

$\Lambda_b \rightarrow \Lambda^*(1520)$ form factors in HQET including $1/m_b$ and α_s effects

M. Bordone, arXiv:2101.12028/Symmetry 2021

Fit to lattice results for vector and axial-vector form factors

Parameter	Best fit point
$\zeta_1^{(0)}$	0.454 ± 0.070
$\zeta_2^{(0)}$	-0.0303 ± 0.0552
$\zeta_1^{(1)} + \zeta_2^{(1)}$	0.113 ± 0.024
$\zeta_1^{ m SL,(0)}$	0.125 ± 0.038
$\zeta_1^{{ m SL},(1)}$	0.0487 ± 0.0614
$\zeta_2^{ m SL,(0)}$	0.0110 ± 0.0363
$\zeta_2^{ m SL,(1)}$	0.00362 ± 0.06184
$\zeta_3^{ m SL,(0)}$	0.228 ± 0.190
$\zeta_4^{ m SL,(0)}$	0.0883 ± 0.185
$\zeta_4^{\mathrm{SL},(1)}-\zeta_3^{\mathrm{SL},(1)}$	-0.0267 ± 0.0773

Table 3.1: Best fit points for the HQE parameters.

 $\Lambda_b \rightarrow \Lambda^*(1520)$ form factors in HQET including $1/m_b$ and α_s effects

Gray = Iattice QCD vector and axial-vector form factors, Red = HQET fit

 $\Lambda_b \rightarrow \Lambda^*(1520)$ form factors in HQET including $1/m_b$ and α_s effects

Gray = lattice QCD tensor form factors (not included in the HQET fit), Red = HQET fit

$1 \quad \Lambda_b \to \Lambda$

- $\Lambda_b \rightarrow \Lambda^*(1520)$
- $\Lambda_c \rightarrow \Lambda^*(1520)$

$\Lambda_c ightarrow \Lambda^*(1520)$ form factors from lattice QCD

S. Meinel and G. Rendon, in preparation. The results are preliminary and the analysis of uncertainties is still incomplete.

For $\Lambda_c \to \Lambda^*(1520)\ell^+\nu$, we can cover the **full kinematic range** even when working in the $\Lambda^*(1520)$ rest frame! We use four different Λ_c momenta, $\mathbf{p}/(2\pi/L) = (0,0,1), (0,1,1), (1,1,1), (0,0,2).$

 $\Lambda_c
ightarrow \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_c \rightarrow \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_c
ightarrow \Lambda^*(1520)$ form factors as a function of $w = v \cdot v'$

 $\Lambda_c \rightarrow X \ \mu^+ \nu$ differential decay rates predicted by lattice QCD

 $[\Lambda_c \rightarrow \Lambda^* (1520):$ S. Meinel and G. Rendon, preliminary; uncertainties not yet shown; $\Lambda_c \rightarrow \Lambda$: S. Meinel, arXiv:1611.09696/PRL 2017; $\Lambda_c \rightarrow n$: S. Meinel, arXiv:1712.05783/PRD 2018]

Open questions and tasks

 $\Lambda_b \to \Lambda \ell^+ \ell^-$ and $\Lambda_b \to \Lambda \gamma$

- An updated measurement of the normalization branching fraction B(Λ_b → ΛJ/ψ) is needed. An improved determination of f(b → Λ_b) would also help.
- The $\Lambda_b o \Lambda \mu^+ \mu^-$ observables at low q^2 should be analyzed using the full LHCb dataset.
- The understanding of nonfactorizable spectator effects at low q^2 needs to be improved.
- $\mathcal{B}(\Lambda_b \to \Lambda \gamma)$ should be studied theoretically using the lattice form factors.
- Higher-precision lattice calculations of the form factors are underway.

Open questions and tasks

 $\Lambda_b \rightarrow \Lambda^*(1520) \ell^+ \ell^-$ and $\Lambda_b \rightarrow \Lambda^*(1520) \gamma$

- How well can the Λ*(1520) contribution be isolated from the Λ_b → pK⁻μ⁺μ⁻ or Λ_b → pK⁻γ decay distributions, which contain many overlapping Λ* resonances?
- What is the best way to reach lower q² on the lattice? Moving-NRQCD action for the b quark? Or work in Λ_b the rest frame and explicitly deal with the mixing of spin-parity quantum numbers?
- Why does the HQET fit deviate for $\tilde{h}_{\perp'}$?
- Can somewhat lower q^2 for $\Lambda_b \to \Lambda^*(1520)$ be reached using a joint HQET fit to the $\Lambda_b \to \Lambda^*(1520)$ and $\Lambda_c \to \Lambda^*(1520)$ form factors?
- Lattice calculations directly at the physical light-quark masses would be useful (but very expensive) to check the quark-mass extrapolations.
- How useful is the high- q^2 region 15 GeV² $\leq q^2 \leq q_{max}^2 \approx 16.8 \text{ GeV}^2$? Will there be enough events, and is the region wide enough to rely on the OPE treatment of charm-loop effects?
- How accurately can the observables be predicted at low q^2 using SCET/QCDF/LCSR?
- What are the prospects for measuring $\mathcal{B}(\Lambda_c \to \Lambda^*(1520)\mu^+\nu)$ at LHCb, BESIII, Belle II?