$\bigwedge_{b} \longrightarrow \bigwedge^{(*)} \text{ form factors}$ Stefan Meinel, Carla Marin —

IPPP Workshop "Beyond the Flavour Anomalies II", 20-22 April 2021

Why baryons?

- Large production at the LHC
 - higher production than B_s Ο

 $rac{f_{\Lambda_b}}{f_d+f_u} = 0.259 \pm 0.018$

PRD100(2019)031102 (13 TeV)

Rich phenomenology due to initial and final state spins

$$\circ$$
 s _{Λ} = 1/2

$$\circ$$
 s_{A1520} = 3/2

Won't give experimental details, will focus on observables, results and limitations from FF (lack of) knowledge.

What's been done so far:

- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$: differential BR and angular observables [LHCb-2011, LHCb-R1, LHCb-R12016]
- $\Lambda_{b} \rightarrow \Lambda \gamma$: observation and BR [LHCb-2016]
- $\Lambda_b \rightarrow pK/\pi \mu^+\mu^-$: observation, CP search and LU (R_{pK}) [LHCb-R1-pK, -p\pi, LHCb-R12016]

Updates and new measurements ongoing

 \circ K₁₁₋₃₄ \propto P_{Ab} \approx 0

• Most data at high q², small excess wrt SM in this region

Value

• Angular moments very compatible with SM

Impact of FF uncertainties

LHCb-PAPER-2015-009

SM prediction from first lattice QCD calculations for $\Lambda_b \rightarrow \Lambda$ <u>Detmold et al</u> (2012)

Detmold & Meinel

Updated lattice QCD calculations in 2016

Improving the measurements

Differential BR precision limited by systematic from normalisation mode. Only $f(b \rightarrow \Lambda_b) \times BR(\Lambda_b \rightarrow \Lambda J/\psi)$ has been measured so far [Tevatron]

• <u>LHCb paper</u>: $f(b \rightarrow \Lambda_b)$ Tevatron+LEP $\rightarrow \mathcal{B}(\Lambda_b^0 \rightarrow J/\psi \Lambda) = (6.3 \pm 1.3) \times 10^{-4}$

• Blake et al:
$$f(b \rightarrow \Lambda_b)$$
 Tevatron only \rightarrow

6

 $\mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = (3.7 \pm 1.0) \times 10^{-4}$

Improving the measurements

Differential BR precision limited by systematic from normalisation mode. Only $f(b \rightarrow \Lambda_b) \times BR(\Lambda_b \rightarrow \Lambda J/\psi)$ has been measured so far [Tevatron]

- <u>LHCb paper</u>: $f(b \rightarrow \Lambda_b)$ Tevatron+LEP $\rightarrow \mathcal{B}(\Lambda_b^0 \rightarrow J/\psi \Lambda) = (6.3 \pm 1.3) \times 10^{-4}$
- <u>Blake et al</u>: $f(b \rightarrow \Lambda_b)$ Tevatron only $\rightarrow B(\Lambda_b \rightarrow J/\psi \Lambda) = (3.7 \pm 1.0) \times 10^{-4}$

Next: measure BR($\Lambda_{\rm b} \rightarrow \Lambda J/\psi$) at LHCb

• will be limited by knowledge of $f_{\Lambda b}/f_d \sim 7\%$

Improving the measurements

Differential BR precision limited by systematic from normalisation mode. Only $f(b \rightarrow \Lambda_b) \times BR(\Lambda_b \rightarrow \Lambda J/\psi)$ has been measured so far [Tevatron]

- <u>LHCb paper</u>: $f(b \rightarrow \Lambda_b)$ Tevatron+LEP $\rightarrow \mathcal{B}(\Lambda_b^0 \rightarrow J/\psi \Lambda) = (6.3 \pm 1.3) \times 10^{-4}$
- <u>Blake et al</u>: $f(b \rightarrow \Lambda_b)$ Tevatron only $\rightarrow B(\Lambda_b \rightarrow J/\psi \Lambda) = (3.7 \pm 1.0) \times 10^{-4}$

Next: measure BR($\Lambda_{\rm b} \rightarrow \Lambda J/\psi$) at LHCb

• will be limited by knowledge of $f_{\Lambda b}/f_d \sim 7\%$

Next: measurements at low q² w/ full LHCb Run 2

• higher sensitivity to NP in C₉

$\Lambda_b \rightarrow \Lambda \gamma$

- BR measurement: 21% stat uncertainty
 - can reach ~10% with full Run 2

 $\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

- Range of SM predictions: (0.6 10)x 10⁻⁶ Wang et al., Gan et al., Gutsche et al., Faustov&Galkin
 - SCET [Mannel&Wang] in good agreement: 7.7 x 10⁻⁶
 - Lattice QCD: extrapolation to $q^2 = 0$ available but not used in BR calculations so far, assuming no NP in C₇ this measurement gives a cross-check

LHCb-PAPER-2019-010 (50 MeV LHCb ----- Signal --- Combinatorial $-\Lambda_h^0 \to \Lambda\eta$ 2016 20Candidates 5500 6500 5000 6000 $m(p\pi^{-}\gamma)$ (MeV)

$\Lambda_b \rightarrow \Lambda \gamma$

- BR measurement: 21% stat uncertainty
 - \circ can reach ~10% with full Run 2

 $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) \times 10^{-6}$

- Range of SM predictions: (0.6 10)x 10⁻⁶
 Wang et al., Gan et al., Gutsche et al., Faustov&Galkin
 - SCET [Mannel&Wang] in good agreement: 7.7 x 10⁻⁶
 - Lattice QCD: extrapolation to $q^2 = 0$ available but not used in BR calculations so far, assuming no NP in C₇ this measurement gives a cross-check
- Photon polarisation independent of FF at LO
 coming soon :)

LHCb-PAPER-2019-010

$\Lambda_b \rightarrow pKl^+l^-$

- R_{pK} shows same trend as R_{K, K^*} : $R_{pK}^{-1}|_{0.1 < q^2 < 6 \text{ GeV}^2/c^4} = 1.17^{+0.18}_{-0.16} \pm 0.07$
- NP interpretation limited by unknown pK spectrum
 - individual FF from quark models
 [Mott&Roberts] and lattice QCD for Λ(1520)
 [Meinel&Rendon]
 - any way to compute expected interference effects from pheno?
- FF input relevant for BR and angular measurements

 $\Lambda_b \rightarrow \Lambda(1520)l^+l^-$

LHCb-PAPER-2019-040

Focus on dominant Λ(1520) region

- $R_{\Lambda(1520)}$ could reach 10% (full Run 2)
 - with small contamination from other Λ^* , how critical is this?

 $\Lambda_b \rightarrow \Lambda(1520)l^+l^-$

Focus on dominant Λ(1520) region

- $R_{\Lambda(1520)}$ could reach 10% (full Run 2)
 - with small contamination from other Λ^* , how critical is this?
- BR and angular observables are sensitive no NP as well
 - but we need FF as input!

FF from <u>Mott&Roberts</u> with 10% (30%) uncertainty on vector (tensor) FF

$\Lambda_b \rightarrow \Lambda(1520)\mu^+\mu^-$

Expected LHCb sensitivity at low q²: impact of FF uncertainties

10% (30%) uncertainty on vector (tensor) FF 5% (2

5% (30%) uncertainty on vector (tensor) FF

Impact of FF

Work by F. Volle <u>Flavio#118</u>

Comparison of <u>Mott&Roberts</u> (QM) and <u>Meinel&Rendon</u> (Lattice QCD) FF:

Significant discrepancy between LQCD and QM at high q², larger than NP effect (small here)

Impact of FF

Work by F. Volle Flavio#118

Cannot extrapolate LQCD to low q², SCET calculation desirable

Theoretical framework

Full angular distribution from <u>Descotes-Genon & Novoa-Brunet</u> [DN] [null Λ_{b} polarisation]:

$$\frac{8\pi}{3} \frac{d^4\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_p d\phi} = \cos^2\theta_p \left(L_{1c}\cos\theta_\ell + L_{1cc}\cos^2\theta_\ell + L_{1ss}\sin^2\theta_\ell\right) \\
+ \sin^2\theta_p \left(L_{2c}\cos\theta_\ell + L_{2cc}\cos^2\theta_\ell + L_{2ss}\sin^2\theta_\ell\right) \\
+ \sin^2\theta_p \left(L_{3ss}\sin^2\theta_\ell\cos^2\phi + L_{4ss}\sin^2\theta_\ell\sin\phi\cos\phi\right) \\
+ \sin\theta_p\cos\theta_p\cos\phi(L_{5s}\sin\theta_\ell + L_{5sc}\sin\theta_\ell\cos\theta_\ell) \\
+ \sin\theta_p\cos\theta_p\sin\phi(L_{6s}\sin\theta_\ell + L_{6sc}\sin\theta_\ell\cos\theta_\ell),$$

cos²θ_p dependency characteristic of s=3/2 state

Heavy quark limit

14 form factors enter decay rate: 8 vector/axial + 6 tensor, large uncertainties

Reduced in heavy quark limit: $m_b \rightarrow \infty$

- low-recoil limit [large q²]: HQET \rightarrow 2 form factors, tensor ones vanish
- large-recoil limit [low q²]: SCET \rightarrow 1 form factor, tensor ones vanish

Neglecting tensor form factors, angular expression largely simplified:

$$\frac{\frac{8\pi}{3}}{\frac{d^{2}d\cos\theta_{\ell}d\cos\theta_{p}d\phi}{\frac{1}{4}(1+3\cos^{2}\theta_{p})\left(L_{1c}\cos\theta_{\ell}+L_{1cc}\cos^{2}\theta_{\ell}+L_{1ss}\sin^{2}\theta_{\ell}\right)}}$$

Contamination from other Λ^* **states**

Only s= $\frac{1}{2}$ states around $\Lambda(1520)$:

Hadron distribution to disentangle them:

- s = 3/2: $\cos^2\theta_p$ terms
- s = 1/2: flat in θ_p (strong decay!)
- fit m(pK) simultaneously

 $\frac{8\pi}{3}\frac{d^4\Gamma}{dq^2d\cos\theta_\ell d\cos\theta_p d\phi}$

$$\simeq \frac{1}{4} (1 + 3\cos^2 \theta_p) \left(L_{1c} \cos \theta_\ell + L_{1cc} \cos^2 \theta_\ell + L_{1ss} \sin^2 \theta_\ell \right)$$

$$\simeq L_{1c}^{1/2} \cos heta_l + L_{1cc}^{1/2} \cos^2 heta_l + L_{1ss}^{1/2} {
m sin}^2 \, heta_l$$

*interference terms more complicated

Aasymmetry parameter

• Recent measurement by BESIII [Nature Physics 15 (2019) 631–634] is 17% larger than current world average value:

 $\alpha_{\Lambda} = 0.642 \pm 0.013$ PDG

 $\alpha_{\Lambda} = 0.750 \pm 0.010$ BESIII

- The larger BESIII value likely solves the problems with the existing LHCb, ATLAS and CMS analyses of Λ_b → J/ψΛ, which favour an unphysical solution [LHCb, PLB 724 (2013) 27][ATLAS, PRD 89 (2014) 092009] [CMS, PRD 97 (2018) 072010].
- Old measurements of *α* had to determine the proton polarisation from secondary scattering.
- Impacts interpretation of the $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$ angular observables.

Angular observables vs moments

22

$\Lambda_{b} \rightarrow \Lambda^{*}$ FF from Mott & Roberts

TABLE III: Coefficients in the parametrization of the vector and axial-vector form factors obtained in the MCN approach.

	$a_n({ m GeV}^{-n})$	F_1	F_2	F_3	F_4	G_1	G_2	G_3	G_4
$\Lambda_b ightarrow \Lambda(1115)$	a_0	1.21	-0.202	-0.0615	1	0.927	-0.236	0.0756	
	a_2	0.319	-0.219	0.00102	-	0.104	-0.233	0.0195	-
	a_4	-0.0177	0.0103	-0.00139	-	-0.00553	0.0110	-0.00115	TT: 2
$\Lambda_b o \Lambda(1600)$	a_0	0.467	-0.381	0.0501	I	0.114	-0.394	-0.0433	
	a2	0.615	-0.281	-0.0295	-	0.300	-0.307	0.0478	
	a_4	0.0568	-0.0399	-0.00163	-	0.0206	-0.0445	0.00566	-
$\Lambda_b ightarrow \Lambda(1405)$	a_0	0.246	-0.984	0.118	Ι	1.15	-0.874	0.00871	-
	a_2	0.238	-0.0257	0.0237	-	0.260	-0.0264	-0.0196	
	a 4	0.00976	0.0173	-0.000692	-	-0.00303	0.0159	-0.000977	
$\Lambda_b ightarrow \Lambda(1520)$	a_0	-1.66	0.544	0.126	-0.0330	-0.964	0.625	-0.183	0.0530
	a_2	-0.295	0.194	0.00799	-0.00977	-0.100	0.219	-0.0380	0.0161
	a_4	0.00924	-0.00420	-0.000365	0.00211	0.00264	-0.00508	0.00351	-0.00221
$\Lambda_b o \Lambda(1890)$	a_0	-0.460	1.33	-0.232	0.0485	-1.71	1.14	0.0193	-0.0153
	a ₂	-0.271	0.00439	-0.0315	0.0140	-0.284	0.00990	0.0374	-0.00770
	a 4	-0.0116	-0.0149	0.000345	-0.00218	-0.00146	-0.0134	-0.000343	-0.000236
$\Lambda_b ightarrow \Lambda(1820)$	a_0	2.48	-0.952	-0.202	0.0810	1.25	-1.12	0.355	-0.143
	a_2	0.362	-0.238	-0.0119	0.00573	0.122	-0.272	0.0446	-0.0197
	a_4	-0.00639	0.00224	0.000303	-0.000169	-0.00134	0.00303	-0.00103	0.000440

$\Lambda_{b} \rightarrow \Lambda^{*}$ FF from Mott & Roberts

TABLE IV: Coefficients in the parametrization of the tensor form factors obtained in the MCN approach.

	$a_n({ m GeV}^{-n})$	H_1	H_2	H_3	H_4	H_5	H_6
	a 0	0.936	0.227	-0.0757	-0.0174	-	Ι
$\Lambda_b \to \Lambda(1115)$	a_2	0.0722	0.265	- <mark>0.0195</mark>	-0.00986	—	
	a_4	-0.00643	-0.0101	0.00116	-0.000524	-	-
$\Lambda_b ightarrow \Lambda(1600)$	<i>a</i> ₀	0.121	0.389	0.0421	0.00676	I	Ι
	a_2	0.313	0.295	-0.0479	-0.0242	-	-
	a_4	0.0101	0.0550	-0.00565	-0.00404	-	-
$\Lambda_b ightarrow \Lambda(1405)$	a 0	-1.13	-0.872	0.00645	-0.112	1	E
	a_2	-0.256	-0.0241	-0.0197	-0.00215	-	
	a 4	0.00288	0.0158	-0.000965	0.00151	-	-
$\Lambda_b ightarrow \Lambda(1520)$	a 0	-1.08	-0.507	0.187	0.0772	-0.0517	0.0206
	a_2	-0.0732	-0.246	0.0295	0.0267	-0.0173	0.00679
	a_4	0.00464	0.00309	-0.00107	-0.00217	0.00259	-0.000220
$\Lambda_b o \Lambda(1890)$	a ₀	1.68	1.13	0.0214	0.198	-0.0147	0.0331
	a ₂	0.280	0.00710	0.0380	-0.00103	-0.00818	0.00674
	a_4	0.00154	-0.0134	-0.000450	-0.00155	-0.000234	-0.00239
$\Lambda_b ightarrow \Lambda(1820)$	a ₀	1.55	0.830	-0.355	-0.160	0.143	-0.0581
	a2	0.0959	0.298	-0.0446	-0.0327	0.0198	-0.0205
	a 4	-0.00427	-0.0000926	0.00103	0.000739	-0.000441	0.00221