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ANOMALIES



They are relatively simple and clean to predict, 
using to QCD factorisation and heavy-quark 
expansion

3

A puzzle in

A recent update of the Standard Model 
prediction, using updated values of CKM 
elements and higher-order computations, 
found a tension with the experimental 
measurements of  ≳5σ.
Bordone, Huber, Gubernari, van Dyk, Jung [2007.10338], 
 
see also: 
Fang-Min Cai, Wei-Jun Deng, Xin-Qiang Li, Ya-Dong Yang [2103.04138]

See e.g. Beneke et al. [hep-ph/0006124]

1 Introduction

Non-leptonic decays are a challenging playground for the Standard Model (SM), particularly for
non-perturbative approaches to quantum chromodynamics (QCD). The question which is often
neglected in the literature is how much new physics can hide in these decays? In particular, given
the present constraints from complementary new physics searches at low and high energies, what
is the allowed deviation from the SM predictions? What is the prospect of discovering new physics
in hadronic non-leptonic decays?

Our goal here is to partially address these questions. In this work, we investigate potential
new physics (NP) effects in b ! cūdi quark-level transitions, where di = d, s. The SM theory
predictions for B̄s ! D

(⇤)+
s ⇡ and B̄ ! D

(⇤)+
K decays are amongst the most reliable in the

sector of non-leptonic decays and are obtained in the framework of QCD factorisation (QCDF).
Given that all quarks in these decays are distinguishable, topologies like penguin contribution or
weak annihilation don’t contribute, rendering the description of these decays rather clean. The most
up-to-date predictions for the branching fraction of these decays have been presented in Ref. [1].
Next-to-leading power corrections, arising at order O(⇤QCD/mb), are discussed, finding that their
impact is expected to be smaller than a percent with respect to the leading-power ones. This
strengthens the predictive power of QCDF for these channels.

Interestingly, the aforementioned update uncovered an interesting tension with the data, spec-
ulating the possibility of NP. A fit to all the available experimental information concerning these
decays is performed in Ref. [1], extracting the current combination of the experimental measure-
ments for B̄s ! D

(⇤)+
s ⇡ and B̄ ! D

(⇤)+
K decays. The comparison with the respective theory

predictions shows that the latter always overestimate the former, with a combined discrepancy of
⇠ 4.4�. This trend has already been observed in the literature (see e.g. Refs. [2, 3]) but has be-
come more apparent due to the updated theory results in Ref. [1]. The main difference between the
results in Ref. [1] with respect to previous analyses (see e.g. Ref.[2]) is the use of updated inputs
for CKM elements, decay constants and form factors for B̄q ! D

(⇤)+
q transitions [4–6], causing

shifts in the central values (the largest one for B̄s ! D
⇤+
s ⇡ decay) and generally a reduction of

the uncertainties on the branching ratios. From the experimental point of view, the non-leptonic
B̄s ! D

(⇤)+
s ⇡ and B̄ ! D

(⇤)+
K decays are often measured as part of ratios with other decay

channels in order to reduce experimental errors.
A satisfactory explanation of this puzzle is not found up to these days. On the theory side, the

hypothesis that such a big deviation depends on missing subleading contributions in QCDF seems
to be unlikely, since they should overshoot the current estimates of at least one order of magnitude.
So it seems motivated to entertain the possibility of this deviation being due to NP. We stress this
possibility introduces very big effects in tree-level dominated decays, which is also questionable.
However, we try to understand at which extend the NP solution is viable, especially in connection
with bounds from related processes.

The elephant in the room are �F = 2 transitions, which are typically induced by requiring
gauge invariance of the NP operatorsthe same gauge invariant operators and require peculiar flavor
structure in order to comply with the present bounds while giving sufficient contribution to non-
leptonic decays.

The flavour-blind spots in the parameter space can be probed by the complementary constraints
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These are tree-level weak decays in the SM, 
mildly suppressed by Vcb Vud(s).

in the high-energy collider searches. The highest mass scale probed by non-leptonic B decays is
not far above the TeV scale. This serves us also as a practical example to connect hadronic meson
decays to high-pT searches at LHC, comparing the New Physics reach of the two. In particular
we focus on the high-energy tail of the di-jet distribution at LHC. This process is very sensitive to
four-quark contact interactions and the effect of New Physics increases with the energy, until the
mass scale of the heavy new state is reached.

2 Bottom-up approach: Effective Field Theory

In this Section we study new physics effects in non-leptonic B decays approaching the problem in
the bottom-up manner to keep the discussion as general as possible. To this purpouse, we utilize the
methods of effective field theory (EFT). After presenting the data, we perform the fit in the weak
effective Hamiltonian to identity the preferred parameter space. The results are then interpreted
in the context of the SM EFT above the electroweak scale. Finally, we list an exhaustive set of
mediators which could reproduce the EFT picture at tree-level.

2.1 Low-energy fits

Measurements — The experimental values for the branching fractions for b ! c ūd(s) transitions
are obtained by fitting all available data in Ref. [1], and are compared with the most updated SM
predictions based on QCDF. To be conservative we choose to employ the experimental fit in the
third column of Table II of [1] (without QCDF inputs but with the LHCb measurements of fs/fd
from semileptonic decays). Let us define the ratio of the measured branching ratio to the respective
SM prediction as

R(X ! Y Z) ⌘ B(X ! Y Z)/B(X ! Y Z)SM . (2.1)

Combining the measurements and SM predictions, including correlations in both experimental and
theoretical uncertainties,1 we obtain the following result:

R(B̄0
s ! D

+
s ⇡

�) = 0.704± 0.074

R(B̄0 ! D
+
K

�) = 0.687± 0.059

R(B̄0
s ! D

⇤+
s ⇡

�) = 0.49± 0.24

R(B̄0 ! D
⇤+

K
�) = 0.66± 0.13

, ⇢ =

0

BBB@

1 0.36 0.16 0.092

0.36 1 0.072 0.16

0.16 0.072 1 0.40

0.092 0.16 0.40 1

1

CCCA
, (2.2)

where ⇢ is the correlation matrix. The observed branching ratios are consistently smaller than the
QCD factorisation prediction [1].

Low-energy effective field theory — The most general theoretical framework for short-
distance NP effects in b ! c ūdi (i = 1, 2) transitions is the low-energy effective field theory
(LEFT) [7]. Here we perform the first new physics analysis including the full set of relevant oper-
ators from Ref. [7]:

LNP =
14X

i=1

LiOi + h.c., (2.3)

1We thank Martin Jung for providing the associated correlation matrix.
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~ 30% depletion of the SM rates.

See talk by A. Lenz for more details.

(s)
(K-)

https://conference.ippp.dur.ac.uk/event/944/contributions/5154/attachments/4163/4895/BeyondAnomalies_2021.pdf
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1. Is there a (possibly reasonable) New Physics explanation consistent with present flavor constraints? 

2. What about di-jet limits from LHC?

Towards a BSM interpretation
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We need to characterise New Physics contributions to the decays, and connect with UV models.

Cit. /

——
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Low-energy EFT dependence and fits
New Physics contributions to the decays:

where the operators Oi are defined in Eq. (A.1) of Appendix A.1. These operators are not in a
convenient form to evaluate the hadronic matrix elements we are interested in. Therefore, we Fierz
the operator basis in Eq. (A.1) to the one of operators Qi reported in Eq. (A.2):

LNP =
7X

i=1

(aiQi + a
0
iQ0

i) + h.c. . (2.4)

The corresponding matching relations between the two bases are reported in Eq. (A.3). The op-
erators Qcbiu

VLL
and Q0cbiu

VLL
correspond to the SM color-allowed and color-suppressed operators Q2

and Q1 in the CMM basis [8], respectively. In these conventions, The SM Wilson coefficients are
C2 = +1.010 and C1 = �0.291 as in Ref. [9]. Comment: there is too many referencing of the
App and other papers at the very start, which will scare off the reader, more narrative is needed.

The hadronic matrix elements for the NP operators are evaluated at leading order in ↵s and
leading power in 1/mb. As in the SM, the NP operators can be grouped in color-allowed and
color-suppressed ones. Therefore, due to color algebra,

hD+(⇤)
q P

�|Q0
i|B̄qi = 0 +O(↵s/Nc) , (2.5)

regardless of the chirality structure of Q0
i

operators. Introducing ↵s corrections generates contri-
butions from the color-suppressed operators proportional to ↵s/Nc. These contributions in the SM
are small compared to the leading ones since they are further suppressed by the Wilson coefficient
C1. For this NP analysis we consider the ↵s/Nc suppression enough to get rid disregard of the Q0

i

operators. Nonetheless, these formally subleading corrections could potentially be large in specific
NP scenarios. A study of their impact is beyond the scope of this paper and will be investigated in
the future works.

The non-zero matrix elements are reported in Eqs. (A.4)–(A.5) of Appendix A.1 and give rise
to the following decay amplitudes for B̄q ! D

+(⇤)
q P

�,

A(B̄q ! D
+
q P

�) =A(B̄q ! D
+
q P

�)SM⇥
(
1 +

1

2
p
2GFVcbV

⇤
ui
C2

�
� a

cbiu

VLL
+ a

cbiu

VRR
+ a

cbiu

VLR
� a

uibc

VLR

�

+
m

2
P

(mu +mdi)(mb �mc)

�
a
cbiu

SRL
� a

cbiu

SLR
� a

cbiu

SRR
+ a

uibc

SRR

���
, (2.6)
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⇤+
q P

�) =A(B̄q ! D
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�)SM⇥
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1 +

1

2
p
2GFVcbV

⇤
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� a
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� a

cbiu

VRR
+ a

cbiu

VLR
+ a

uibc

VLR

�

+
m

2
P

(mu +mdi)(mb +mc)

�
a
cbiu

SRL
+ a

cbiu

SLR
� a

cbiu

SRR
� a

uibc

SRR

���
, (2.7)

where i = d, s corresponds to P
� = ⇡

�
,K

�, respectively.

Fit to the data — These decay amplitudes are used to calculate the ratio of the branching
fractions to the respective SM prediction in Eq. (2.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 (2.8)
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where i = d, s corresponds to P
� = ⇡

�
,K

�, respectively.

Fit to the data — These decay amplitudes are used to calculate the ratio of the branching
fractions to the respective SM prediction in Eq. (2.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 (2.8)
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Figure 1. Low-energy EFT fit to B̄q ! D
+(⇤)
q P

� decays. Solid and dashed lines show 68% and 95% CL
regions for vector operators (left panel) and scalar operators (right panel).

from which we perform a fit using Eq. (2.2) and Eqs. (2.6)–(2.7). Only half of the NP operators
contributing to the amplitudes in Eq. (2.6) and Eq. (2.7) can simultaneously explain the observed
suppression in both final states with a D

+
q or a D

+⇤
q meson. These operators are a

i

VLL
, ai

VLR
, ai

SRR

and a
i

SRL
. The other half of operators can not fit the data well. Regarding the flavor structure, new

interactions with both strange and down quarks are needed.
The results of the fits are shown in Fig. 1. The left (right) panel is for new vector (scalar)

interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid lines are the boundaries of the 68% and 95% confidence
level (CL) regions. The discrepancy between the SM prediction and measurements is manifested
as a shift of the preferred region from the origin. The best-fit point in the left (right) plane has a
��

2 ⇡ 36 (35) compared to the SM prediction and corresponds to

vector:
n
a
cbdu

VLL
� a

cbdu

VLR
⇡ 0.23Vud TeV�2

, a
cbsu

VLL
� a

cbsu

VLR
⇡ 0.24Vus TeV�2

,

scalar:
n
a
cbdu

SRR
� a

cbdu

SRL
⇡ 0.26Vud TeV�2

, a
cbsu

SRR
� a

cbsu

SRL
⇡ 0.31Vus TeV�2

.

(2.9)

The preferred size of the effective operators suggests ultraviolet (UV) completion not far above
the TeV scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-
like flavor structure, with the operators involving the strange quark being Cabibbo-suppressed with
respect to those with the down quark, as shown with the gray dotted lines in Fig. 1.

2.2 Extrapolation to high energies

Standard Model effective field theory — The EFT coefficients in Fig. 1 are reported at scale
µR = mb. In order to establish connections with possible UV completions, these results have to
be appropriately extrapolated to high-energies. First, the EFT coefficients are matched to the Low
Energy EFT (LEFT) in the San Diego basis [7], Eq. (A.3), and evolved up to the EW scale (see
App. A.2). This EFT is thus matched to the Standard Model effective field theory (SMEFT) and
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vector scalar

which is below the current bound in ref. [47].

From the analysis of the previous observables, we conclude that also the model in Benchmark
I is insensitive to flavour constraints.

6 Conclusions

It’s awesome.
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A Details of the EFT analysis

A.1 Hadronic matrix elements for the NP operators

The set of operators in the LEFT that we consider is:
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)(ūkR�

µ
u
l

R) , [OV8,LR

du
]ijkl = (d̄iL�µT

A
d
j

L
)(ūkR�
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In order to evaluate the necessary matrix elements, apply Fierz transformation to get the following
set of operators:
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= (ūiR�µT
A
d
j

R
)(d̄kR�

µ
T
A
u
l

R) , Qijkl

VRR
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The relation between the two sets of operators (using the same normalization for Qi as in (2.3)) is
given by
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We can now evaluate the hadronic matrix elements for the operators Qi at leading power in 1/mb

and leading order in ↵s. We note that due to color algebra, the matrix elements for hP�
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Low-energy EFT dependence and fits
New Physics contributions to the decays:

where the operators Oi are defined in Eq. (A.1) of Appendix A.1. These operators are not in a
convenient form to evaluate the hadronic matrix elements we are interested in. Therefore, we Fierz
the operator basis in Eq. (A.1) to the one of operators Qi reported in Eq. (A.2):
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and Q1 in the CMM basis [8], respectively. In these conventions, The SM Wilson coefficients are
C2 = +1.010 and C1 = �0.291 as in Ref. [9]. Comment: there is too many referencing of the
App and other papers at the very start, which will scare off the reader, more narrative is needed.
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operators. Introducing ↵s corrections generates contri-
butions from the color-suppressed operators proportional to ↵s/Nc. These contributions in the SM
are small compared to the leading ones since they are further suppressed by the Wilson coefficient
C1. For this NP analysis we consider the ↵s/Nc suppression enough to get rid disregard of the Q0
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operators. Nonetheless, these formally subleading corrections could potentially be large in specific
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where i = d, s corresponds to P
� = ⇡

�
,K

�, respectively.

Fit to the data — These decay amplitudes are used to calculate the ratio of the branching
fractions to the respective SM prediction in Eq. (2.1) as

R(X ! Y Z) =
|A(X ! Y Z)|2

|A(X ! Y Z)SM|2 (2.8)
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Figure 1. Low-energy EFT fit to B̄q ! D
+(⇤)
q P

� decays. Solid and dashed lines show 68% and 95% CL
regions for vector operators (left panel) and scalar operators (right panel).

from which we perform a fit using Eq. (2.2) and Eqs. (2.6)–(2.7). Only half of the NP operators
contributing to the amplitudes in Eq. (2.6) and Eq. (2.7) can simultaneously explain the observed
suppression in both final states with a D

+
q or a D

+⇤
q meson. These operators are a

i

VLL
, ai

VLR
, ai

SRR

and a
i

SRL
. The other half of operators can not fit the data well. Regarding the flavor structure, new

interactions with both strange and down quarks are needed.
The results of the fits are shown in Fig. 1. The left (right) panel is for new vector (scalar)

interactions. The horizontal and the vertical axes are for the couplings to down and to strange
quarks, respectively. The dashed and solid lines are the boundaries of the 68% and 95% confidence
level (CL) regions. The discrepancy between the SM prediction and measurements is manifested
as a shift of the preferred region from the origin. The best-fit point in the left (right) plane has a
��

2 ⇡ 36 (35) compared to the SM prediction and corresponds to

vector:
n
a
cbdu

VLL
� a

cbdu

VLR
⇡ 0.23Vud TeV�2

, a
cbsu

VLL
� a

cbsu

VLR
⇡ 0.24Vus TeV�2

,

scalar:
n
a
cbdu

SRR
� a

cbdu

SRL
⇡ 0.26Vud TeV�2

, a
cbsu

SRR
� a

cbsu

SRL
⇡ 0.31Vus TeV�2

.

(2.9)

The preferred size of the effective operators suggests ultraviolet (UV) completion not far above
the TeV scale. Furthermore, we observe that in both cases the fits are compatible with a CKM-
like flavor structure, with the operators involving the strange quark being Cabibbo-suppressed with
respect to those with the down quark, as shown with the gray dotted lines in Fig. 1.

2.2 Extrapolation to high energies

Standard Model effective field theory — The EFT coefficients in Fig. 1 are reported at scale
µR = mb. In order to establish connections with possible UV completions, these results have to
be appropriately extrapolated to high-energies. First, the EFT coefficients are matched to the Low
Energy EFT (LEFT) in the San Diego basis [7], Eq. (A.3), and evolved up to the EW scale (see
App. A.2). This EFT is thus matched to the Standard Model effective field theory (SMEFT) and
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vector scalar

which is below the current bound in ref. [47].

From the analysis of the previous observables, we conclude that also the model in Benchmark
I is insensitive to flavour constraints.

6 Conclusions

It’s awesome.
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A Details of the EFT analysis

A.1 Hadronic matrix elements for the NP operators

The set of operators in the LEFT that we consider is:
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In order to evaluate the necessary matrix elements, apply Fierz transformation to get the following
set of operators:
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The relation between the two sets of operators (using the same normalization for Qi as in (2.3)) is
given by
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We can now evaluate the hadronic matrix elements for the operators Qi at leading power in 1/mb

and leading order in ↵s. We note that due to color algebra, the matrix elements for hP�
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Need TeV-scale New Physics that 
induces at tree-level a process 
that violates ALL QUARK FLAVORS!

@ LO
This story 

is not going to be a fairy tail… 
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Which mediators?

Mediators

NeutralCharged

Charged mediators have to be above ~100 GeV (color-less) or ~1 TeV (colored).

Neutral mediators necessarily couple to FCNC > excluded by tree-level FCNC.

*Loop models would be even more disfavoured by dĳet (light and strongly coupled to quarks, see backup)

We need tree-level mediators above the EW scale.



7

From the B scale to the UV
with

[O(1)
qq ]ijkl = (q̄iL�µq

j

L
)(q̄kL�µq

l

L) , [O(3)
qq ]ijkl = (q̄iL�

a
�µq

j

L
)(q̄kL�

a
�µq

l

L) ,

[O(1)
ud

]ijkl = (ūiR�µu
j

R
)(d̄kR�µd

l

R) , [O(8)
ud

]ijkl = (ūiRT
A
�µu

j

R
)(d̄kRT

A
�µd

l

R) ,

[O(1)
qd

]ijkl = (q̄iL�µq
j

L
)(d̄kR�µd

l

R) , [O(8)
qd

]ijkl = (q̄iLT
A
�µq

j

L
)(d̄kRT

A
�µd

l

R) ,

[O(1)
qu ]ijkl = (q̄iL�µq

j

L
)(ūkR�µu

l

R) , [O(8)
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A
�µq

j

L
)(ūkRT

A
�µu

l

R) ,

[O(1)
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]ijkl = (q̄iLu
j

R
)(i�2)(q̄kLd

l

R) , [O(8)
quqd

]ijkl = (q̄iLT
A
u
j

R
)(i�2)(q̄kLT

A
d
l

R) .

(A.9)

Tree-level matching between the LEFT and the SMEFT, in the down-quark mass basis:

[LV 1,LL
ud

]prst = VpiV
⇤
rj

✓
[C(1)

qq ]ijst + [C(1)
qq ]stij � [C(3)

qq ]ijst � [C(3)
qq ]stij +

2

Nc

([C(3)
qq ]itsj + [C(3)

qq ]sjit)

◆

[LV 8,LL
ud

]prst = 4VpiV
⇤
rj

⇣
[C(3)

qq ]itsj + [C(3)
qq ]sjit

⌘

[LV 1,RR
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]prst = [C(1)
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]prst
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]prst

[LV 1,LR
ud

]prst = 4VpiV
⇤
rj [C

(1)
qd

]ijst

[LV 8,LR
ud

]prst = 4VpiV
⇤
rj [C

(8)
qd

]ijst

[LV 1,LR
du

]prst = [C(1)
qu ]prst

[LV 8,LR
du

]prst = [C(8)
qu ]prst (A.10)

[LV 1,LR
uddu

]prst = 0

[LV 8,LR
uddu

]prst = 0

[LS1,RR

ud
]prst = Vpi[C

(1)
quqd

]irst

[LS8,RR

ud
]prst = Vpi[C

(8)
quqd

]irst

[LS1,RR

uddu
]prst = �Vpi[C

(1)
quqd

]stir

[LS8,RR

uddu
]prst = �Vpi[C

(8)
quqd

]stir

The SMEFT coefficients must then be RG evolved from the EW scale up to the scale at which
the heavy states are integrated out. For the diquark benchmark model, the only relevant operators
are [O(1)

quqd
] and [O(8)

quqd
]. The four coefficients contributing to the process from the matching in

Eq. (4.4) and only non-vanishing couplings yL12 yR13 are

~C =
⇣
[C(1)

quqd
]1123, [C

(8)
quqd

]1123, [C
(1)
quqd

]2113, [C
(8)
quqd

]2113
⌘
t

. (A.11)

They evolve from mZ up to MH6 as ~C(mZ) = U(mZ ,MH6) ~C(mZ), with

U(mZ ,MH6) =

 
1.39 �0.03 0.18 0.08
�0.2 0.92 �0.18 0.08
0.18 0.08 1.39 �0.03
�0.18 0.08 �0.2 0.92

!

1 TeV

,

 
1.67 �0.04 0.33 0.12
�0.35 0.88 �0.33 0.12
0.33 0.12 1.67 �0.04
�0.33 0.12 �0.35 0.88

!

5 TeV

(A.12)
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UV mediator

Low-energy operatorsmB

M

mEW SMEFT

LE
FT

 R
G

E
SM

EF
T 

RG
E
SMEFT operators:

Possible tree-level mediators, 
that do not necessarily also induce tree-level meson mixing:

(†)

(†) The heavy Higgs requires aligned couplings and no mixing with SM Higgs.

[O(1)
qq ]ijkl = (q̄iL�µq

j
L)(q̄

k
L�µq

l
L) [O(3)

qq ]ijkl = (q̄iL�
a�µq

j
L)(q̄

k
L�

a�µqlL)

[O(1)
ud ]ijkl = (ūi

R�µu
j
R)(d̄

k
R�µd

l
R) [O(8)

ud ]ijkl = (ūi
RT

A�µu
j
R)(d̄

k
RT

A�µdlR)

[O(1)
qd ]ijkl = (q̄iL�µq

j
L)(d̄

k
R�µd

l
R) [O(8)

qd ]ijkl = (q̄iLT
A�µq

j
L)(d̄

k
RT

A�µdlR)

[O(1)
qu ]ijkl = (q̄iL�µq

j
L)(ū

k
R�µu

l
R) [O(8)

qu ]ijkl = (q̄iLT
A�µq

j
L)(ū

k
RT

A�µul
R)

[O(1)
quqd]ijkl = (q̄iLu

j
R)(i�

2)(q̄kLd
l
R) [O(8)

quqd]ijkl = (q̄iLT
Auj

R)(i�
2)(q̄kLT

AdlR)

Table 3. SMEFT operators relevant for b ! cūdi transitions.

structure, with the operators involving the strange quark being Cabibbo-suppressed with respect to
those with the down quark, as shown with the gray dotted lines in Fig. 4. This is a desirable trait
from the flavor model building perspective.

Standard model effective field theory

The EFT coefficients in Fig. 4 are reported at scale µR = mb. To establish connections with
possible UV completions, these results have to be appropriately extrapolated to high energies. The
low-energy EFT coefficients are evolved up to the EW scale and then matched at tree-level to the
SMEFT. These are finally evolved to the UV scale (see App. A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing canonical
dimension. Among all possible dimension-six SMEFT coefficients, we focus on the dimension-
six four-fermion operators that either contribute directly at tree-level to b ! cūdi or strongly mix
with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.

– 14 –

W’ case studied by Iguro and Kitahara [2008.01086]: 
meson mixing excludes a full explanation of the anomaly, and strong couplings 
required even for a partial explanation.
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Model example and flavour bounds
Among the possible tree-level mediators, one that doesn’t mediate meson-mixing at tree-level is:

Scalar sextet di-quark

Can fit the “anomaly” with only two couplings:

matrices Si

AB
are:

S
1 =

0

B@
1 0 0
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0 0 0

1

CA , S
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1p
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B@
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CA , S
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1

CA ,
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4 =

1p
2
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0 1 0

1

CA , S
5 =

0
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0 0 0

0 0 0

0 0 1

1

CA , S
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2
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0 0 1

0 0 0

1 0 0

1

CA .

(4.2)

The conjugate representation is given by H
AB†
6 = S̄

AB

i
H

i⇤
6 = S

i

BA
H

i

6 and the matrices satisfy

TrSi
S̄i = �

i

j ,

X

i

S
i

ABS̄
CD

i =
1

2
(�DA �

C

B + �
C

A�
D

B ) . (4.3)

Matching the H6 to the SMEFT at tree-level one has:

[C(1)
qq ]ijkl = [C(3)

qq ]ilkj =
y
L⇤
ik
y
L

jl

4M2
H6

,

[C(1)
ud

]ijkl =
2

3
[C(8)

ud
]ijkl =

y
R

jl
y
R⇤
ik

3M2
H6

,

[C(1)
quqd

]ijkl =
2

3
[C(8)

quqd
]ijkl = 4

y
L

ki
y
R⇤
jl

3M2
H6

.

(4.4)

In terms of the a coefficients at the mb scale:

a
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= �4
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
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RGE

X

i 6=↵; j=1,2
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⇤
uj

(yL⇤
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
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SRR
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
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y
L⇤
i3 y
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2↵

M
2
H6

,

(4.5)

where we already imposed that yL is antisymmetric and 
V,S

RGE describe the effect of RGE from
MH6 to mb. For instance 

S

RGE ⇡ 1.65 (1.85) for MH6 = 1 (5) TeV. As we shall see below, the
potentially strong limits from meson mixing can be alleviated by allowing only two non-vanishing
couplings:

y
L =

0

B@
0 y

L

12 0

�y
L

12 0 0

0 0 0

1

CA , y
R =

0

B@
0 0 y

R

13

0 0 0

0 0 0

1

CA . (4.6)

In this case the non-vanishing aX coefficients for B̄ ! D
(⇤)
q P

� decays are

a
cbdu

SRR
⇡ 2

3

S

RGEVcs
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12 y
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13

M
2
H6
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⇡ �2
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M
2
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⇡ �0.31Vcd

TeV2 . (4.7)
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Figure 6. 95% CL limit on y
L

12 from meson mixing (red), K+ ! ⇡
+
⌫⌫ (purple), and (✏0/✏) (blue), as a

function of the diquark mass.

Taking the low-energy matrix elements from [33] and the constraints from UTFit [34],2 we get the
limit on y

L

12 as a function of the diquark mass as shown as a red line in Fig 6. More details on
intermediate steps are shown in App. B. This bound is reported as an upper limit on the product
y
L⇤
12 y

R

13 as a function of MH6 of Fig. 4 by setting the maximal possible value (yR13)max =
p
4⇡ from

perturbativity.

4.1.2 K+ ! ⇡+⌫⌫

The golden-channel Kaon decay can be described by the effective Hamiltonian [35]

He↵ � GFV
⇤
tsVtdp
2

↵

⇡
C

L

⌫↵
(s̄L�µdL)(⌫̄↵�

µ(1� �5)⌫↵) + h.c. , (4.10)

where ↵ = 1, 2, 3 is the neutrino flavor and we do not consider lepton flavor violation. The SM
contribution is given by

C
L,SM

⌫↵
= � 1

s
2
W

✓
Xt +

V
⇤
csVcd

V
⇤
ts
Vtd

X
↵

c

◆
, (4.11)

where Xt ⇡ 1.48, Xe
c = X

µ
c ⇡ 1.053⇥ 10�3, and X

⌧
c ⇡ 0.711⇥ 10�3. The diquark contribution

is lepton flavor universal and is given by [31]

C
L,H6
⌫ =

1

2s2
W

v
2(V y

⇤
L
)32(V ⇤

yL)31
m

2
W
V

⇤
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Vtd

IZ

 
m

2
t

M
2
H6

!
, (4.12)

where the loop function is

IZ(yt) = � yt

1� yt
� yt log yt

(1� yt)2
. (4.13)

The branching ratio is given by

Br(K+ ! ⇡
+
⌫⌫) = 2Br(K+ ! ⇡

+
⌫e⌫e)SM

�����1 +
C

L,H6
⌫

C
L,SM
⌫e

�����

2

+Br(K+ ! ⇡
+
⌫⌧⌫⌧ )SM

�����1 +
C

L,H6
⌫

C
L,SM
⌫⌧

�����

2

,

(4.14)
2We use the updated results shown by L. Silvestrini at the La Thuile conference in 2018.
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Meson mixing, and other rare decays, 
are however generated at loop level. 
 
Flavor bounds can be avoided!

Non-trivial result, given 
the wild flavor structure. 
 
Already huge improvement 
w.r.t. W’ model.

The main goal of this section is to show how the high-pT searches at the LHC, specifically
those from dijet signatures, can test the solutions of the anomaly for all viable mediators. We
separate the discussion into two subsections based on the pair production dijet resonance searches
from Sect. 2.1. In particular, in Sect. 4.1 we focus on colored resonances which receive important
constraints from the pair production at the LHC, while the colorless doublet �1 is studied in isola-
tion in Sect. 4.2. The colorless mediator can in principle be much lighter since the relevant bound
comes only from the LEP-II collider.

The single dijet resonance searches derived in Section 2.2 can be used in both cases. Non-
leptonic meson decays depend on the product of two couplings when the resonance is integrated
out at tree level. In particular, the product of the couplings entering those decays satisfies

|xqiqj x⇤qkql | = |xqiqj |⇥ |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-observation of
�(pp ! X ! jj) at high-pT . Using this inequality, we can limit NP contributions in B̄q !
D(⇤)+

q {⇡,K} decays.

4.1 Colored mediators

As discussed in Sect. 2.1, the QCD-induced pair production at the LHC sets robust lower limits
on the masses of the colored mediators in the range 0.5 TeV to 1.15 TeV, depending on the repre-
sentation. Note that, complementary to the pair production, the single mechanism is effective for
heavy resonances. The combination of single and pair production dismisses all these mediators as
the explanation of the anomaly, see Fig. 5.

In the following we show the interplay between the dijet bounds and the fit to the anomaly for
each mediator, leaving the details on the models and their EFT matching to App. B.

Color-sextet diquark �6

The SM is extended with the singlet sextet diquark scalar �6 = (6,1, 1/3). The relevant interaction
Lagragian is:

L�6 � yLij�
↵�†
6 q̄c(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (4.3)

where  (↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and yL is an antisymmetric matrix. The components of the

sextet representations are given as �↵�

6 ⌘ Si

↵�
�i

6, where i = 1, . . . , 6 and the symmetric color
matrices Si

↵�
are given in Eq. (B.2). The anomaly can be addressed by switching on only two

couplings:

yL =

0

B@
0 yL12 0

�yL12 0 0

0 0 0

1

CA , yR =

0

B@
0 0 yR13
0 0 0

0 0 0

1

CA . (4.4)

It is worth noticing that the structure of the left-handed couplings yL of Eq. (4.4) is compatible with
the approximate U(2)q symmetry of the SM Lagrangian, where the first two families transform as a
doublet while the third as a singlet [60]. Indeed, since the antisymmetric combination of the qi=1,2

L

doublets transforms as a singlet, the U(2)q symmetry would predict yL12 ⇠ O(1) while yL13, y
L

23 ⌧
1. Regarding the right-handed couplings, the U(2)u ⇥ U(2)d symmetry would predict yR33 ⇠ 1
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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From flavour to LHC

X

X

X
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Figure 1. Representative Feynman diagrams for the pair production pp ! XX ! (jj)(jj) (left diagram)
and the single production pp ! X ! jj (right diagram) of a dijet resonance X at the LHC. The constraints
from the existing searches are reported in Section 2 for different representations and flavor interactions.

ferent B is straightforward, if other decay channels are present it might be worth considering the
constraints from the corresponding searches since they may be stronger than those from dijets.

The total decay width to mass ratio �X/mX is a crucial parameter in resonance searches. We
will focus mostly on models featuring narrow resonances in which perturbative calculations are
fully under control. By the optical theorem, the total decay width is related to loop corrections to
the propagator. Collider searches for narrow resonances typically imply the following condition,
�X/mX . 0.1, due to the limited detector resolution. In the second part of the study, where we
focus on the NP explanation of b ! cūdi anomalies, the narrow width approximation is valid in a
broad mass range assuming the minimal set of couplings. Nonetheless, we will comment on how
much the collider bounds can be relaxed for a broad resonance, with an increased �X/mX ratio,
while being cautious about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach of the
LHC. If the resonance mass mX is above the reach for on-shell production at the LHC, its effect
can be studied in the high-pT dijet tails in terms of four-quark contact interactions. From the exper-
imental point of view, this requires a qualitatively different approach since it is no more possible
to fit the data with a resonance-like signal over a smooth background. Other observables, such as
the angular distributions of the two jets, are instead employed. For example, see Ref. [37] for an
ATLAS search and Ref. [38] for and EFT analysis in terms of flavor-universal contact interactions.
We leave the analysis of the full set of flavor-dependent four-quark contact interactions for future
work, focusing here on on-shell narrow resonances. The non-leptonic decays studied in the second
part of the paper focus on the weakly coupled ultraviolet (UV) completions for which the reso-
nance searches are sufficient, while contact interactions will be relevant for strongly coupled UV
completions.
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Gauge pair-production → 2 dijet pairs s-channel production → dijet resonance

Mediators

Necessarily charged, possibly colored



Any mediator for b→ c u̅ d(s) will necessarily also induce 
an s-channel resonance in di-jet distribution at LHC:

10

General di-jet constraints

X

u/c

di

c/u

b

SU(3)C : 1, 3, 6, 8
U(1)qed : ± 1/3, ± 1

Spin : 0, 1, …

Figure 2. Generic tree-level Feynman diagram at the matching scale.

3.3 Pair production of dijet resonances

Even in the limit of a small coupling to quark currents, the resonance X is pair-produced by gauge
interactions, see the first term in Eq. (3.1). The pair production rate is robustly set by the resonance
mass mX and its gauge representation. The LEP-II bounds rely on QED production in e

+
e
� !

XX̄ and apply for all resonances. A narrow scalar resonance exclusively decaying to jj satisfies

(LEP� II) m
X±1/3 & 80GeV , mX±1 & 95GeV , (3.2)

see Fig. 9(c) in [12]. Similar limits apply for vector resonances.
The Tevatron and the LHC bounds require QCD interactions to be effective and thus apply

only for colored resonances. QCD pair production of light colored resonances at hadron colliders
is overwhelming. The main challenge in these searches is to suppress the large multijet back-
ground. Nonetheless, the most recent ATLAS and CMS searches at 13 TeV with about 36 fb�1 are
able to robustly exclude pair-produced colored resonances decaying exclusively to jj [13, 14]. In
particular, the experimental limits on the complex scalar weak-singlet resonances are

Scalar 3 6 8

mX >
410GeV (ATLAS) 820 GeV (ATLAS) 1050GeV (ATLAS)
520GeV (CMS) 950 GeV (CMS) 1000 GeV (CMS)

.

Here we report the upper limit of the exclusion mass window, while the lower limit extends all the
way down to the LEP-II exclusions. In other words, the combination of all experiments robustly
excludes a resonance X with the mass smaller from what is reported in the table above. The limits
on the color triplet and octet are directly based on the stop and sgluon benchmarks, respectively.
Note that our octet is a complex field, which doubles the sgluon cross section used in [13]. We
neglect small differences in the acceptance times efficiency for resonances of different color (and
spin), such that representations not considered by the experimental collaborations are constrained
by comparing the predicted production cross sections with the 95% CL observed limits from Figure
9 of Ref. [13] and Figure 11 of Ref. [14]. This is validated comparing the exclusion limits on stop,
sgluon and coloron from Ref. [13]. For the color sextet, we calculate the cross section using
MadGraph5_aMC@NLO [15] and the UFO model from the FeynRules [16] repository based on
the implementation of [17].
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generic mediator

Narrow dijet resonance searches at 13 TeV LHC

ATLAS 1804.03496

ATLAS 1910.08447

CMS 1911.03947

CMS 1806.00843
CMS 1909.04114 CMS 1911.03761
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Figure 3. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV reported in
Refs. [20–25]. Top panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks
(i, j) = (1, 1). The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial decay width
�W 0/mW 0 from Eq. (3.6). Bottom panel shows the combined dijet limits on resonances of different spin
and color, as well as, arbitrary flavor couplings (i, j) (see Eq. (3.4) and discussion below). Dashed lines
are for qq resonances (color triplets and sextets) while solid lines are for qq̄ resonances (color singlets and
octets). For multiplicative rescaling factors for color (�C) and spin (�S) see Eq. (3.9) and discussion below.
This plot assumes B(X ! jj) = 1 and is valid when the total decay width to mass ratio is �X/mX . 10%.
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where xij is the coupling constant with i and j flavor indices. The spin factor SX for scalar and vec-
tor resonance X is PL/R and �

µ
PL/R , respectively, where PL/R is the left/right chirality projector.

Quarks in the initial and final state are assumed to be massless, which is a good approximation at
high-pT . Finally, the color factor CX↵� is

(singletX) : �↵� , (tripletX�) : ✏↵�� , (sextetX��) :
1

2
(�↵���� + ����↵�) , (octetX

A) : TA

↵�
,

(3.5)
where ↵,�, �, � = 1, 2, 3 and A = 1, ..., 8. The partial decay width for spin-1 colorless W

0

resonance is
�(W 0 ! u

i
d
j) =

mW 0

8⇡
|xij |2 , (3.6)

while for the other resonances

�(X ! u
i
d
j)

mX

= �C �S
�(W 0 ! u

i
d
j)

mW 0
, (3.7)

where �S is 1 for a vector resonance and 3/2 for a scalar resonance. Also, �C = 1 (color singlet),
�C = 2/3 (color triplet), �C = 1/3 (color sextet), and �C = 1/6 (color octet). The cross section
for the production of a narrow spin one colorless resonance W

0 in the quark fusion at the LHC is
determined by the partial decay width of the inverse process,

�(pp ! W
0) =

8⇡2

3s0

�(W 0 ! uidj)

mX

Z 1

m
2
X/s0

dx
1

x
f
p

i
(x) fp

j

✓
m

2
X

xs0

◆
, (3.8)

where
p
s0 is the collider energy, and f

p

i
(x) are the parton distribution functions.

Fig. 3 (top panel) shows exclusions on W
0 coupled to valence quarks, L � xud ūL�

µ
dLW

0
µ.

The plot shows 95% CL upper limits on |xud|, or equivalently partial decay width �W 0/mW 0 in
Eq. (3.6), in the mass range m0

W
2 (50, 5000) GeV. Experiments employ different search strategies

depending on the mass of the resonance. High-mass resonances are easier to hunt than the low-mass
resonances for which the multijet background from QCD is enormousdominant. However, there
has been an impressive progress on this front recently [20–22]. Novel experimental techniques,
such as the data scouting by CMS, probe the parameter space untouchable by previous experiments
at lower energies (see e.g. CDF [26] and UA2 [27]). This allows us to set important constraints on
colorless resonances (H 0 or W 0) which are not ruled out by pair production searches discussed in
Sec. 3.3.

Dijet searches do not discriminate between different diquark resonances. In other words, the
W

0 results can be reinterpreted for other mediators with different flavor couplings. Comparing the
production cross sections for the same coupling xij in Eq. (3.4), we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (3.9)

where �S = 1 (vector) and �S = 1/2 (scalar). Also, �C = 1 (color singlet), �C = 2 (color
triplet and sextet), and �C = 4/3 (color octet). The exclusions on the couplings for other cases
are obtained by rescaling those in Fig. 3 (top panel) with the appropriate ratio of parton luminosity
functions. In our numerical calculations we use MMHT14 NNLO central PDF set [28]. These are
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0 results can be reinterpreted for other mediators with different flavor couplings. Comparing the
production cross sections for the same coupling xij in Eq. (3.4), we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (3.9)

where �S = 1 (vector) and �S = 1/2 (scalar). Also, �C = 1 (color singlet), �C = 2 (color
triplet and sextet), and �C = 4/3 (color octet). The exclusions on the couplings for other cases
are obtained by rescaling those in Fig. 3 (top panel) with the appropriate ratio of parton luminosity
functions. In our numerical calculations we use MMHT14 NNLO central PDF set [28]. These are
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Normalizing the production and decay rate 
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Figure 3. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV reported in
Refs. [20–25]. Top panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks
(i, j) = (1, 1). The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial decay width
�W 0/mW 0 from Eq. (3.6). Bottom panel shows the combined dijet limits on resonances of different spin
and color, as well as, arbitrary flavor couplings (i, j) (see Eq. (3.4) and discussion below). Dashed lines
are for qq resonances (color triplets and sextets) while solid lines are for qq̄ resonances (color singlets and
octets). For multiplicative rescaling factors for color (�C) and spin (�S) see Eq. (3.9) and discussion below.
This plot assumes B(X ! jj) = 1 and is valid when the total decay width to mass ratio is �X/mX . 10%.
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Figure 2. Generic tree-level Feynman diagram at the matching scale.

3.3 Pair production of dijet resonances

Even in the limit of a small coupling to quark currents, the resonance X is pair-produced by gauge
interactions, see the first term in Eq. (3.1). The pair production rate is robustly set by the resonance
mass mX and its gauge representation. The LEP-II bounds rely on QED production in e

+
e
� !

XX̄ and apply for all resonances. A narrow scalar resonance exclusively decaying to jj satisfies

(LEP� II) m
X±1/3 & 80GeV , mX±1 & 95GeV , (3.2)

see Fig. 9(c) in [12]. Similar limits apply for vector resonances.
The Tevatron and the LHC bounds require QCD interactions to be effective and thus apply

only for colored resonances. QCD pair production of light colored resonances at hadron colliders
is overwhelming. The main challenge in these searches is to suppress the large multijet back-
ground. Nonetheless, the most recent ATLAS and CMS searches at 13 TeV with about 36 fb�1 are
able to robustly exclude pair-produced colored resonances decaying exclusively to jj [13, 14]. In
particular, the experimental limits on the complex scalar weak-singlet resonances are

Scalar 3 6 8

mX >
410GeV (ATLAS) 820 GeV (ATLAS) 1050GeV (ATLAS)
520GeV (CMS) 950 GeV (CMS) 1000 GeV (CMS)

.

Here we report the upper limit of the exclusion mass window, while the lower limit extends all the
way down to the LEP-II exclusions. In other words, the combination of all experiments robustly
excludes a resonance X with the mass smaller from what is reported in the table above. The limits
on the color triplet and octet are directly based on the stop and sgluon benchmarks, respectively.
Note that our octet is a complex field, which doubles the sgluon cross section used in [13]. We
neglect small differences in the acceptance times efficiency for resonances of different color (and
spin), such that representations not considered by the experimental collaborations are constrained
by comparing the predicted production cross sections with the 95% CL observed limits from Figure
9 of Ref. [13] and Figure 11 of Ref. [14]. This is validated comparing the exclusion limits on stop,
sgluon and coloron from Ref. [13]. For the color sextet, we calculate the cross section using
MadGraph5_aMC@NLO [15] and the UFO model from the FeynRules [16] repository based on
the implementation of [17].
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Figure 3. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV reported in
Refs. [20–25]. Top panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks
(i, j) = (1, 1). The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial decay width
�W 0/mW 0 from Eq. (3.6). Bottom panel shows the combined dijet limits on resonances of different spin
and color, as well as, arbitrary flavor couplings (i, j) (see Eq. (3.4) and discussion below). Dashed lines
are for qq resonances (color triplets and sextets) while solid lines are for qq̄ resonances (color singlets and
octets). For multiplicative rescaling factors for color (�C) and spin (�S) see Eq. (3.9) and discussion below.
This plot assumes B(X ! jj) = 1 and is valid when the total decay width to mass ratio is �X/mX . 10%.
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where xij is the coupling constant with i and j flavor indices. The spin factor SX for scalar and vec-
tor resonance X is PL/R and �

µ
PL/R , respectively, where PL/R is the left/right chirality projector.

Quarks in the initial and final state are assumed to be massless, which is a good approximation at
high-pT . Finally, the color factor CX↵� is

(singletX) : �↵� , (tripletX�) : ✏↵�� , (sextetX��) :
1

2
(�↵���� + ����↵�) , (octetX

A) : TA

↵�
,

(3.5)
where ↵,�, �, � = 1, 2, 3 and A = 1, ..., 8. The partial decay width for spin-1 colorless W

0

resonance is
�(W 0 ! u

i
d
j) =

mW 0

8⇡
|xij |2 , (3.6)

while for the other resonances

�(X ! u
i
d
j)

mX

= �C �S
�(W 0 ! u

i
d
j)

mW 0
, (3.7)

where �S is 1 for a vector resonance and 3/2 for a scalar resonance. Also, �C = 1 (color singlet),
�C = 2/3 (color triplet), �C = 1/3 (color sextet), and �C = 1/6 (color octet). The cross section
for the production of a narrow spin one colorless resonance W

0 in the quark fusion at the LHC is
determined by the partial decay width of the inverse process,

�(pp ! W
0) =

8⇡2

3s0

�(W 0 ! uidj)

mX

Z 1

m
2
X/s0

dx
1

x
f
p

i
(x) fp

j

✓
m

2
X

xs0

◆
, (3.8)

where
p
s0 is the collider energy, and f

p

i
(x) are the parton distribution functions.

Fig. 3 (top panel) shows exclusions on W
0 coupled to valence quarks, L � xud ūL�

µ
dLW

0
µ.

The plot shows 95% CL upper limits on |xud|, or equivalently partial decay width �W 0/mW 0 in
Eq. (3.6), in the mass range m0

W
2 (50, 5000) GeV. Experiments employ different search strategies

depending on the mass of the resonance. High-mass resonances are easier to hunt than the low-mass
resonances for which the multijet background from QCD is enormousdominant. However, there
has been an impressive progress on this front recently [20–22]. Novel experimental techniques,
such as the data scouting by CMS, probe the parameter space untouchable by previous experiments
at lower energies (see e.g. CDF [26] and UA2 [27]). This allows us to set important constraints on
colorless resonances (H 0 or W 0) which are not ruled out by pair production searches discussed in
Sec. 3.3.

Dijet searches do not discriminate between different diquark resonances. In other words, the
W

0 results can be reinterpreted for other mediators with different flavor couplings. Comparing the
production cross sections for the same coupling xij in Eq. (3.4), we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (3.9)

where �S = 1 (vector) and �S = 1/2 (scalar). Also, �C = 1 (color singlet), �C = 2 (color
triplet and sextet), and �C = 4/3 (color octet). The exclusions on the couplings for other cases
are obtained by rescaling those in Fig. 3 (top panel) with the appropriate ratio of parton luminosity
functions. In our numerical calculations we use MMHT14 NNLO central PDF set [28]. These are
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depending on the mass of the resonance. High-mass resonances are easier to hunt than the low-mass
resonances for which the multijet background from QCD is enormousdominant. However, there
has been an impressive progress on this front recently [20–22]. Novel experimental techniques,
such as the data scouting by CMS, probe the parameter space untouchable by previous experiments
at lower energies (see e.g. CDF [26] and UA2 [27]). This allows us to set important constraints on
colorless resonances (H 0 or W 0) which are not ruled out by pair production searches discussed in
Sec. 3.3.

Dijet searches do not discriminate between different diquark resonances. In other words, the
W

0 results can be reinterpreted for other mediators with different flavor couplings. Comparing the
production cross sections for the same coupling xij in Eq. (3.4), we find

�(pp ! X)

�(pp ! W 0)
= �C�S , (3.9)

where �S = 1 (vector) and �S = 1/2 (scalar). Also, �C = 1 (color singlet), �C = 2 (color
triplet and sextet), and �C = 4/3 (color octet). The exclusions on the couplings for other cases
are obtained by rescaling those in Fig. 3 (top panel) with the appropriate ratio of parton luminosity
functions. In our numerical calculations we use MMHT14 NNLO central PDF set [28]. These are
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Figure 3. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV reported in
Refs. [20–25]. Top panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks
(i, j) = (1, 1). The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial decay width
�W 0/mW 0 from Eq. (3.6). Bottom panel shows the combined dijet limits on resonances of different spin
and color, as well as, arbitrary flavor couplings (i, j) (see Eq. (3.4) and discussion below). Dashed lines
are for qq resonances (color triplets and sextets) while solid lines are for qq̄ resonances (color singlets and
octets). For multiplicative rescaling factors for color (�C) and spin (�S) see Eq. (3.9) and discussion below.
This plot assumes B(X ! jj) = 1 and is valid when the total decay width to mass ratio is �X/mX . 10%.
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tree-level mediators 
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Fitting the anomaly vs. dijet - Colored mediators
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Table 3. SMEFT operators relevant for b ! cūdi transitions.

structure, with the operators involving the strange quark being Cabibbo-suppressed with respect to
those with the down quark, as shown with the gray dotted lines in Fig. 4. This is a desirable trait
from the flavor model building perspective.

Standard model effective field theory

The EFT coefficients in Fig. 4 are reported at scale µR = mb. To establish connections with
possible UV completions, these results have to be appropriately extrapolated to high energies. The
low-energy EFT coefficients are evolved up to the EW scale and then matched at tree-level to the
SMEFT. These are finally evolved to the UV scale (see App. A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing canonical
dimension. Among all possible dimension-six SMEFT coefficients, we focus on the dimension-
six four-fermion operators that either contribute directly at tree-level to b ! cūdi or strongly mix
with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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For each scenario, we choose the 
most favourable combination of couplings: 
largest contribution to the anomaly, 
with smallest constraint from dĳets.

All the colored mediators are excluded,  
for all couplings range where the model 
is perturbative.

Dijet constraints are stronger than 
bounds from FCNC (loop-generated).

|y1 y2| = |y1| |y2| < |y1|max |y2|max 
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Table 3. SMEFT operators relevant for b ! cūdi transitions.

structure, with the operators involving the strange quark being Cabibbo-suppressed with respect to
those with the down quark, as shown with the gray dotted lines in Fig. 4. This is a desirable trait
from the flavor model building perspective.

Standard model effective field theory

The EFT coefficients in Fig. 4 are reported at scale µR = mb. To establish connections with
possible UV completions, these results have to be appropriately extrapolated to high energies. The
low-energy EFT coefficients are evolved up to the EW scale and then matched at tree-level to the
SMEFT. These are finally evolved to the UV scale (see App. A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing canonical
dimension. Among all possible dimension-six SMEFT coefficients, we focus on the dimension-
six four-fermion operators that either contribute directly at tree-level to b ! cūdi or strongly mix
with such operators. In Table 3, we list all these operators. Other tree-level effects in the SMEFT,
such as W -vertex corrections, are better constrained elsewhere, and can not give sizable effect to
B̄q ! D(⇤)+

q {⇡,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-level by
integrating out a new bosonic field X coupled to quark currents. Here we list the complete set
of new scalar and vector mediators which generate the relevant operators shown in Fig. 4 at tree-
level with renormalisable interactions [58], without also necessarily inducing dangerous �F = 2

transitions at tree-level

spin-0:

(
�1 = (1,2, 1/2), �8 = (8,2, 1/2),

�3 = (3̄,1, 1/3),  3 = (3̄,3, 1/3), �6 = (6,1, 1/3),

spin-1: {Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L, U(1)Y ). Among
other mediators that generate at tree-level the effective operators listed in Eq. (A.9), colored vectors
(3,2,�5/6) and (6̄,2,�5/6) are not viable since the coefficients acbiu

SLR
do not fit the anomaly. On

the other hand, the vector triplet W 0 = (1,3, 0), vectors (8,1, 0) and (8,3, 0), and the scalar
(6,3, 1/3) mediate a neutral meson mixing at tree-level even with the minimal set of couplings
required to fit the anomaly. Hence, we do not consider them further given the stringent constraints
on �F = 2 transitions. We refer to Ref. [59] for a more detailed discussion of the W 0 case.
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-induced
pair production of dijet resonances (brown) compared with the best-fit region from non-leptonic B decays.
The constraints are imposed on the product of the two relevant couplings as a function of the mass for
colored mediators listed in Eq. (4.1). Note that the constraints from Sect. 2.2 are strictly applicable for
�X/mX . 10% which is not necessarily the case in the upper parts of the plot, depending on the relative
sizes of the couplings. The anomaly in B̄q ! D+(⇤)

q P� selects the best-fit region at 68% CL (green) and
95% CL (yellow). Shown with the red dashed lines in the top-left plot (�6) are the limits from the meson
mixing for two representative choices of yR13 coupling. For more details see Sect. 4.1.

while all other terms should be suppressed. By introducing a spurion Vu = (au, 0), with au ⌧ 1,
transforming as a doublet of U(2)u it is possible to generate a small value of yR13 ⇠ au ⌧ 1.
This spurion is not required by the minimal breaking of the symmetry necessary to generate the
SM Yukawas. We thus conclude that this setup could be compatible with a non-minimally broken
U(2)5 flavor symmetry if yL12 ⇠ 1, yR33 ⇠ 1 and yR13 ⌧ 1.

In the following, we considering the minimal set of couplings introduced in Eq. (4.4). The
non-vanishing aX coefficients for B̄ ! D(⇤)

q P� decays are

acbduSRR
⇡ 2

3
SRGEVcs

yL⇤12 y
R

13

M2
�6

⇡ 0.26Vcs

TeV2 , acbsuSRR
⇡ �2

3
SRGEVcd

yL⇤12 y
R

13

M2
�6

⇡ �0.31Vcd

TeV2 , (4.5)

where SRGE ⇡ 1.65 (1.85) for M�6 = 1 (5) TeV. The 1� and 2� regions from the anomaly fit in
the plane of the product of the two couplings and the mediator mass is shown as a green and yellow
band in the top-left panel of Fig. 5, respectively. This state contributes to precisely measured
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For each scenario, we choose the 
most favourable combination of couplings: 
largest contribution to the anomaly, 
with smallest constraint from dĳets.

All the colored mediators are excluded,  
for all couplings range where the model 
is perturbative.

Dijet constraints are stronger than 
bounds from FCNC (loop-generated).

|y1 y2| = |y1| |y2| < |y1|max |y2|max 
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Fitting the anomaly vs. dijet - Scalar Doublet4.2 Colorless scalar doublet model

The scalar doublet �1 = (1,2, 1/2) is among the possible tree-level mediators capable to fit the
anomaly, Eq. (4.1). It is, however, a unique mediator in the list since it is not charged under QCD
and therefore not sufficiently constrained by the pair production at the LHC. For generic Yukawa
couplings, its neutral component will mediate �F = 2 transitions at tree-level. This can be avoided
by a suitable alignment in flavor space. While such alignment is theoretically rather unappealing, it
is still motivated to consider this option as it opens up a qualitatively different region of parameter
space where the mediator mass is comparable to the heaviest particles in the SM. In the case of
colored mediators discussed above, pp ! XX ! (jj)(jj) searches imply a mass gap from the
SM states, and to fit the anomaly, this means larger couplings, such that pp ! X ! jj becomes
important. For this reason, we study the simplified �1 model in details.

Having the same quantum numbers as the SM Higgs boson, the two states will mix in general.
This would disrupt the precise flavor alignment required to pass the meson mixing constraints and
must be forbidden. For the sake of this simplified analysis, we just assume that �1 is the mass
eigenstate corresponding to the doublet which does not take a vacuum expectation value and that
no mixing is present at tree-level. Regarding its Yukawa couplings, we consider two different
benchmark scenarios, designed ad-hoc to avoid tree-level contributions to meson mixing:

Benchmark I — The couplings of the extra scalar �1 are exclusively to the right-handed down
quarks and are diagonal in the down-quark mass basis,

LYuk
�1

= ydi �
†
1d̄

i

Rq
i

L + h.c., (4.14)

where qi
L
= (V ⇤

ji
uj
L
, di

L
)T . Integrating out the scalar �1, the LEFT operators LV 1(8),LR

ud
are gener-

ated at low energies, which contribute to the aijkl
SRL

coefficients as

acbiuSRL
= RGEVcbV

⇤
ui

yd⇤3 yd
i

M2
�1

, (4.15)

where RGE ⇡ 2.0 for M�1 = 200GeV, derived using DsixTools 2.0 [61]. This structure is
compatible with the fit in the right panel of Fig. 4, where the relation yd1 = yd2 allows to simplify
the analysis.

Benchmark II — The couplings of �1 are aligned to the right-handed bottom quark and to
the right-handed up quark:

LYuk
�1

= yd3 �
†
1b̄Rq

3
L + yu1 ¯̃q1LuR �̃1 + h.c., (4.16)

where q3
L
= (V ⇤

jb
uj
L
, bL)T , q̃1

L
= (uL, Vujd

j

L
)T , and yu1 and yd3 are complex numbers. In this setup

the relevant LEFT coefficients generated at low energies are LS1,RR

uddu
, which contribute as

acbiuSRR
= RGEVcbVui

yd⇤3 yu1
M2

�1

, (4.17)

where RGE ⇡ 2.07 for M�1 = 200GeV. Also this benchmark fits very well the excess in the
hadronic B decays.
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hadronic B decays.
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Figure 7. The compilation of the high-pT collider constraints on the �1 model (Benchmark I) together
with the best-fit region from non-leptonic B decays. See Section 4.2 for details.

already leads to very strong bounds. In particular, searches for �1 ! tb, when m�1 > mt, and
for t ! b�1, when m�1 < mt, exclude most of the remaining parameter space except for a small
window around m�1 ⇡ mt, where the two processes are kinematically suppressed. The bounds on
yb from top decays are extracted from the dedicated ATLAS search [63]. Similarly, the limits on
|y⇤

d
yb| from the �1 production are a combination of the ATLAS search in the tt̄b final state [64],

the CDF search for a resonance in pp ! tb [65, 66] and the single dijet searches from Fig. 7.
Regarding the blind spot, the single dijet limits on the couplings are:

m�1 ⇡ mt : |yd1 | < 0.22 , |yd3 | < 0.88 , (|yu1 | < 0.20) . (4.19)

This is the benchmark that we will consider in our flavor study. Before that, let us comment on
other relevant collider probes of this blind spot. We used MadGraph5_aMC@NLO [42] to calculate
processes with off-shell �1 and/or top quark. We identify the following signatures at the LHC
which could further squeeze the interesting parameter space in the future: tt̄�1, single top, and
V �1 where V = W,Z.

Flavour Constraints

Concerning constraints from low-energy observables, we note that in Benchmark II flavor chang-
ing processes from a b to lighter down-type quarks are always proportional to yu1 and are then
suppressed by the up-quark mass. Similar arguments can be applied to charm physics, where only
the coupling yd3 enters. However, in this case, the strong suppression comes from the CKM. There-
fore we conclude that Benchmark II is insensitive to flavor constraints. In the case of Benchmark
I, it is not straightforward to draw analogous conclusions. In Appendix D we investigate a specific
parameter-space point for m�1 ⇡ mt and yd

i
, finding that also Benchmark I cannot be excluded by

low-energy flavour constraints. Small variations around this point do not change our conclusions.
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parameter-space point for m�1 ⇡ mt and yd

i
, finding that also Benchmark I cannot be excluded by

low-energy flavour constraints. Small variations around this point do not change our conclusions.
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A blind spot remains around mtop:

… but LHC sensitivity is just behind the corner!
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The End … ?
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Backup
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Loop models?
Requirements: 
• No colored mediators (would be too heavy) 
• No neutral mediators coupled to FCNC

Best-fit:

These light mediators couple strongly to quarks: even larger dĳet signals than tree-level mediators.

Narrow dijet resonance searches at 13 TeV LHC
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Figure 3. Experimental limits on a narrow dijet resonance from the LHC searches at 13 TeV reported in
Refs. [20–25]. Top panel is for a spin-1 colorless W 0 coupled to a single flavor combination of chiral quarks
(i, j) = (1, 1). The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial decay width
�W 0/mW 0 from Eq. (3.6). Bottom panel shows the combined dijet limits on resonances of different spin
and color, as well as, arbitrary flavor couplings (i, j) (see Eq. (3.4) and discussion below). Dashed lines
are for qq resonances (color triplets and sextets) while solid lines are for qq̄ resonances (color singlets and
octets). For multiplicative rescaling factors for color (�C) and spin (�S) see Eq. (3.9) and discussion below.
This plot assumes B(X ! jj) = 1 and is valid when the total decay width to mass ratio is �X/mX . 10%.

– 12 –

Assuming 100% Br in X →jj
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Four-quark operators
The SM background of the di-jet distribution is obtained by fitting data with a smooth function. 
This doesn’t allow to put limits on EFT operators, since they also induce a smooth energy dependence.

energy scale uncertainty, with an impact of at most 15% at high m j j values, for the raw distribution before
the fit is performed. The uncertainty in the jet energy resolution has negligible impact. The theoretical
uncertainties and the total uncertainties are displayed as shaded bands around the prediction in Figure 2,
where theoretical uncertainties can be seen to dominate.

The compatibility of the � distribution in data with the SM prediction and with the BSM signals dis-
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Figure 2: Reconstructed distributions of the dijet angular variable � in di↵erent regions of the dijet invariant mass
mj j for events with |y⇤| < 1.7, |yB| < 1.1, and pT > 440 (60) GeV for the leading (subleading) jet. The data (points),
Pythia predictions with NLO and electroweak corrections applied (solid lines), and examples of the contact interac-
tion (CI) signals discussed in the text (dashed lines) are shown. The theoretical uncertainties and the total theoretical
and experimental uncertainties in the predictions are displayed as shaded bands around the SM prediction. The SM
background prediction and corresponding systematic uncertainty bands are extracted from the best-fit to the data.
Data and predictions are normalized to unity in each mj j bin.
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However, the shape of angular distributions (e.g. rapidity) 
can be more robustly predicted. 
 
This can be used to put limits on four-quark contact interactions.
ATLAS [1703.09127]

Table 1: Summary of the analysis selection criteria for the three considered signal regions.

pleading
T psubleading

T |y⇤| |yB| m j j

Resonance > 0.44 TeV > 0.06 TeV < 0.6 - > 1.1 TeV
W⇤ > 0.44 TeV > 0.06 TeV < 1.2 - > 1.7 TeV
Angular > 0.44 TeV > 0.06 TeV < 1.7 < 1.1 > 2.5 TeV

Table 2: The 95% CL lower limits on the masses of ADD quantum black holes (BlackMax event generator), W 0
and W⇤ bosons, excited quarks, and Z0 bosons for selected coupling values from the resonance search, as well as
on the scale of contact interactions for constructive (⌘LL = �1) and destructive (⌘LL = +1) interference from the
angular analysis. Where an additional range is listed, masses within the range are also excluded. Full limits on the
Z0 model are provided in Figure 4.

Model 95% CL exclusion limit

Observed Expected

Quantum black hole 8.9 TeV 8.9 TeV

W0 3.6 TeV 3.7 TeV

W⇤ 3.4 TeV 3.6 TeV3.77 TeV – 3.85 TeV

Excited quark 6.0 TeV 5.8 TeV

Z0(gq = 0.1) 2.1 TeV 2.1 TeV

Z0(gq = 0.2) 2.9 TeV 3.3 TeV

Contact interaction (⌘LL = �1) 21.8 TeV 28.3 TeV

Contact interaction (⌘LL = +1) 13.1 TeV 15.0 TeV17.4 TeV – 29.5 TeV
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applying the resonance selection, with the limit that corresponds most closely to the width of the Gaussian
contribution predicted by the model. Since a Gaussian signal shape is assumed in determining the limits,
any long tails in the m j j distribution should not be included in the model under study. A procedure similar
to the one detailed in Appendix A.1 of Ref. [19] can be followed, after applying the non-perturbative
corrections and performing the fiducial selection at particle level, without applying any further detector
smearing as it is already accounted for in the folding procedure.

The folding procedure applied for the various signal samples discussed above, using transfer matrices
based on either the same or di↵erent samples, yields reconstructed distributions compatible with the ones
from full simulation. The limits on narrow signals at particle level, folded with the detector e↵ects, are
similar to the ones obtained for a Gaussian signal at reconstruction level having a width equal to the one
expected from detector resolution.5 For resonance widths comparable to the resolution, di↵erences up
to about 20% are observed between the results of the two limit-setting approaches. The folding method
yields results at particle level, accounting also for the mass dependence of the resolution within the range
of the resonance, hence its relevance for providing results that are easy to interpret. For large signal
widths, the e↵ect of the detector resolution on the global width is smaller and the di↵erence between the
results of the two limit-setting approaches is reduced.

For all signals described above, the following systematic uncertainties are included in the limit setting:
jet energy scale, acceptance uncertainties associated to the choice of PDF, and luminosity. The jet energy
uncertainty ranges from 1.5% at the lowest masses to 3% for masses above 4.5 TeV. On average, the
PDF uncertainty a↵ects the angular distributions by 1%. The uncertainty in the combined 2015+2016
integrated luminosity is 3.2%. It is derived, following a methodology similar to that detailed in Ref. [88],
from a preliminary calibration of the luminosity scale using x–y beam-separation scans performed in
August 2015 and May 2016.

The dijet angular distributions can also be modified by new mediating particles with a mass much higher
than that which can be probed directly. A four-fermion e↵ective field theory (contact interaction) charac-
terized by a single energy scale ⇤ can be used to describe these e↵ects:

Lqq =
2⇡
⇤2 [ ⌘LL(q̄L�

µqL)(q̄L�µqL)

+ ⌘RR(q̄R�
µqR)(q̄R�µqR)

+ 2⌘RL(q̄R�
µqR)(q̄L�µqL)] , (2)

where the quark fields have left-handed (L) and right-handed (R) chiral projections and the coe�cients
⌘LL, ⌘RR, and ⌘RL activate various interactions. Contact interactions with a non-zero left-chiral color-
singlet coupling (⌘LL = ±1, ⌘RL = ⌘RR = 0) are simulated using Pythia 8.186. This type of coupling
is chosen because its angular distributions are representative of those of other BSM models (e.g. Z0

and others studied here by the resonance search). Interference of the signal model with the SM process
qq̄ ! qq̄ is included. Events are simulated for both constructive and destructive interference with
⇤ = 7 TeV. From this sample, the angular distributions for other values of ⇤ are obtained using the
fact that the interference term is proportional to 1/⇤2 and the pure contact-interaction cross-section is
proportional to 1/⇤4. The Pythia signal prediction is reweighted to the NLO cross-sections provided by
CIJET [89]. Uncertainties in the prediction of the angular distributions for contact interaction signals are
obtained in the same manner as for QCD processes, including JES and PDF uncertainties (as discussed
in Section 6).

5 Di↵erences of about 4% between these limits are seen, due to non-Gaussian tails of the resolution which are taken into
account by the folding matrix, but are not accounted for in the case of the Gaussian signal at reconstruction level.

11

We plan to generalize this to all four-quark operators.
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Model details

flavor-violation processes at one-loop level. We study the relevant constraints in Appendix C,
which place an upper limit on yL12 as function of the mass. The stronger bound comes from D0

and K0 mixing, and the limit is shown in Fig. 5 (top-left) as dashed and dotted red lines, for two
different assumptions on the right-handed coupling yR13. As shown in the plot, these complementary
constraints from low-energy measurements are not able to probe the interesting parameter space.

The dijet resonance limits become less effective when the resonance is broader,

��6

M�6

=
8|yL12|2 + |yR13|2

16⇡
& 0.1 , (4.6)

but the perturbativity of the model comes into question. Fixing the best-fit value for the product
of the two couplings, the condition above is always violated for M�6 & 2 TeV. The strongest dijet
constraints on the two couplings yL12 and yR13 entering Eq. (4.5), arise from the processes us ! �6

and ub ! �6, respectively. The product of the two couplings, that contributes directly to the
anomaly, is bounded since |yL12yR13| < |yL12|max|yR13|max. Compared to the generic Lagrangian in
Eq. (B.1) the couplings are given by xij = 2yL

ij
for the left-handed quarks and xij = yR

ij
for the

right-handed ones. As shown in Fig. 5 (top-left), the region preferred by the anomaly is excluded
by the dijet searches for all masses where the theory is perturbative.

Color-triplet diquark �3

The scalar triplet �3 = (3̄,1, 1/3) couples to the SM quarks as

L�3 � yqq
ij
✏↵���

↵

3 q̄
�

Li
(i�2)q

c �

Lj
+ yduij ✏↵���

↵

3 d̄
�

Ri
uc �
Rj

+ h.c. , (4.7)

where yqq
ij

is a symmetric matrix. Baryon number conservation must be imposed to suppress the
couplings to quark and leptons, that would otherwise mediate proton decay. The coupling structure
that allows fitting the anomaly with least suppression demands three non-vanishing couplings ydu⇤31 ,
yqq12, and yqq22, such that

acbduSRR
= �2.6

yqq12y
du⇤
31

M2
�3

⇡ 0.26Vud

TeV2 , acbsuSRR
=

(�2.6yqq22 + 0.60yqq12)y
du⇤
31

M2
�3

⇡ 0.31Vus

TeV2 . (4.8)

A good fit requires the relation yqq22 ⇡ 0.50yqq12.
The partonic processes that give the strongest constraints on the couplings relevant to this

model are the same as in the scalar sextet case, as well as the the relations between the yqq/du
ij

and
xij couplings. As shown in Fig. 5 (top-right), the dijet searches firmly exclude the parameter space
relevant for the anomaly in all the perturbative range of the model.

Potentially strong limits from loop-induced flavor-violating processes might require a par-
ticular coupling structure. We do not discuss them further since the dijet searches are already
quite restrictive. The case of the scalar  3 = (3̄,3, 1/3) is discussed in the appendix and shares
analogous features as the scenario where �3 only couples to LH quarks. This scenario is not so
advantageous for the anomaly since it involves a sizable coupling to the top quark, which implies
stronger collider constraints. For this reason, we do not consider it separately, referring to App. B
for more details.
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Color-octet scalar �8 = (8, 2, 1/2)

The scalar octet �8 couples to quarks with the Lagrangian

L�8 � yqu
ij
�↵†
8 i�2q̄

T

LiT
↵uRj + ydq

ij
�↵†
8 d̄RiT

↵qLj + h.c. . (4.9)

In order to fit the anomaly with minimal CKM suppression and least possible effect in dijet searches
we consider the following non-vanishing couplings: ydq31 , ydq32 , and yqu21 . The low-energy coefficients
induced by these couplings are:

acbiuSRR
⇡ 0.44Vcs

ydq⇤3i yqu21
M2

�8

, (4.10)

where i = 1, 2. We take ydq⇤32 = Vus/Vud ydq⇤31 in order to be consistent with the relative ef-
fect observed in K and ⇡ channels. In the case of the color-octet representation, the limits from
QCD pair production are particularly strong, forbidding masses below ⇠ 1 TeV. Furthermore, the
relatively small numerical factor in the low-energy coefficients acbiu

SRR
requires larger couplings to

fit the anomaly compared to the previous models. These facts, combined, exclude a successful
explanation of the observed deviation with this setup, as shown in Fig. 5 (bottom-left).

Vectors Q3 and Q6

The triplet and sextet vectors Q3 = (3,2, 1/6) and Q6 = (6̄,2, 1/6) interact with SM quarks as

LQ � gQ3
ij

Q↵µ†
3 ✏↵�� d̄

�

Ri
�µ(i�2)q

c�

Lj
+

1

2
gQ6
ij

Q↵�µ†
6 d̄(↵|

Ri
�µ(i�2)q

c|�)
Lj

+ h.c. . (4.11)

The tree-level contribution to the low-energy EFT coefficients relevant for the anomalies is given
by

acbiuSRL
=

4

3
SRGEV

⇤
uiVcj

 
gQ3⇤
3i gQ3

ij

M2
Q3

�
gQ6⇤
3i gQ6

ij

M2
Q6

!
, (4.12)

where SRGE ⇡ 2.23 for a scale of 1 TeV. The two states give the same contribution, up to a sign
change for one coupling. The combination which has a weaker CKM suppression is obtained with
these three couplings only: gQ,dq

31 , gQ,dq

12 , and gQ,dq

22 . In particular,

acbduSRL
⇡

3.0VcsV ⇤
ud

M2
Q

gQ⇤
31 g

Q
12 ⇡ �0.26Vud

TeV2 , acbsuSRL
⇡

3.0VcsV ⇤
ud

M2
Q

gQ⇤
31 g

Q
22 ⇡ �0.31Vus

TeV2 . (4.13)

To fit the anomaly, we impose the relation gQ22 = gQ12V
⇤
us/V

⇤
ud

.
In this scenario the leading partonic processes for dijet production are dc ! Q�1/3⇤

3 , du !
Q�1/3⇤

3 (Cabibbo-suppressed), and ds ! Q2/3⇤
3 , induced by gQ12, and bu ! Q�1/3⇤

3 and bd !
Q2/3⇤

3 , induced by gQ31. The strongest limits are from the ds (du in the high-mass region) and bu

induced ones. Also, in this case, the dijet constraints exclude a weakly-coupled solution of the
anomaly, see Fig. 5 (bottom-right).
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where yL is an antisymmetric matrix. The components of the sextet representations are given as
�↵�

6 ⌘ Sm

↵�
�m

6 , where m = 1, . . . , 6 and the symmetric color matrices Sm

↵�
are given in Eq. (B.2).

The conjugate representation is given by �↵�†
6 = S̄↵�

m �m⇤
6 = Sm

↵�
�m

6 . Matching �6 to the SMEFT
at tree-level one has [58]:

[C(1)
qq ]ijkl = [C(3)

qq ]ilkj =
yL⇤
ik
yL
jl

4M2
�6

,

[C(1)
ud

]ijkl =
2

3
[C(8)

ud
]ijkl =

yR
jl
yR⇤
ik

3M2
�6

,

[C(1)
quqd

]ijkl =
2

3
[C(8)

quqd
]ijkl = 4

yL
ki
yR⇤
jl

3M2
�6

.

(B.5)

In terms of the a EFT coefficients at the mb scale:

acb↵uVLL
= �4

3
VRGE

X

i 6=↵; j=1,2

VciV
⇤
uj

(yL⇤
↵i
yL
j3)

M2
�6

,

acb↵uVRR
=

1

3
VRGE

(yR⇤
2↵ y

R

13)

M2
�6

,

acb↵uSRR
=

2

3
SRGE

X

i 6=↵

Vci

yL⇤
↵i
yR13

M2
�6

,

au↵bcSRR
= �2

3
SRGE

X

i=2,3

Vui

yL⇤
i3 yR2↵
M2

�6

,

(B.6)

where we already imposed that yL is antisymmetric and V,SRGE describe the effect of RGE from
m�6 to mb. For instance SRGE ⇡ 1.65 (1.85) for m�6 = 1 (5) TeV.

Scalar color-triplet �3 = (3̄, 1, 1/3)

The interaction Lagragian to SM quarks is:3

L�3 � yqq
ij
✏↵���

↵

3 q̄
�

Li
(i�2)q

c �

Lj
+ yduij ✏↵���

↵

3 d̄
�

Ri
uc �
Rj

+ h.c. , (B.7)

where yqq
ij

is a symmetric matrix. Matching to the �3 to the SMEFT at tree-level one has [58]:

[C(1)
qq ]ijkl = �[C(3)

qq ]ilkj =
yqq
ik
yqq⇤
lj

2M2
�3

,

[C(1)
ud

]ijkl = �1

3
[C(8)

ud
]ijkl =

ydu
ki
ydu⇤
lj

3M2
�3

,

[C(1)
quqd

]ijkl = �1

3
[C(8)

quqd
]ijkl = 4

yqq
ki
ydu⇤
lj

3M2
�3

.

(B.8)

3This state could also potentially couple to quarks and leptons, as a leptoquark [58]. Allowing for such couplings,
together with the diquark ones, would induce proton decay. To avoid this we must thus assign baryon number B(�3) =

2/3 and impose at least B conservation.
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where we show the evolution for two values of the diquark mass. In the case of the scalar doublet
more operators are generated and the RG evolution has been performed using DsixTools.

B Details on the tree-level mediators

Conventions for dijet limits

Let us define here the couplings xij of a bosonic resonance X with quark bilinears used in the dijet
analysis. For a given representation of the resonance (spin, SU(3)c) and a coupling to qiq0j , with
q(0) = u, d of arbitrary flavors i, j, we define the interaction Lagrangians as2

(0,1) : L � xij X q̄iPXq0j + h.c. ,

(0,3) : L � xij X
↵ ✏↵�� q̄c

�

i
PXq0�

j
+ h.c. ,

(0,6) : L � xij X
m Sm

↵�
q̄c(↵|

i
PXq0|�)

j
+ h.c. ,

(0,8) : L � xij X
A q̄iT

APXq0j + h.c. ,

(1,1) : L � xij Xµ q̄i�
µPXq0j (+h.c.) ,

(1,3) : L � xij X
↵

µ ✏↵�� q̄
c�

i
�µPXq0�

j
+ h.c. ,

(1,6) : L � xij X
m

µ Sm

↵�
q̄c(↵|

i
�µPXq0|�)

j
+ h.c. ,

(1,8) : L � xij X
A

µ q̄iT
A�µPXq0j (+h.c.) ,

(B.1)

where the chirality projector PX can be either PL/R for left/right spinors. Also, TA are the gener-
ators of SU(3)c,  

(↵|
i
 |�)
j

= 1
2( 

↵

i
 �

j
+  �

i
 ↵

j
), and Sm

↵�
are the symmetric color matrices

S1 =

0

B@
1 0 0

0 0 0

0 0 0

1

CA , S2 =
1p
2

0

B@
0 1 0

1 0 0

0 0 0

1

CA , S3 =

0

B@
0 0 0

0 1 0

0 0 0

1

CA ,

S4 =
1p
2

0

B@
0 0 0

0 0 1

0 1 0

1

CA , S5 =

0

B@
0 0 0

0 0 0

0 0 1

1

CA , S6 =
1p
2

0

B@
0 0 1

0 0 0

1 0 0

1

CA ,

(B.2)

which satisfy the matrices satisfy

TrSmS̄n = �mn ,
X

m

Sm

↵�
S̄��

m =
1

2
(��↵�

�

�
+ ��↵�

�

�
) . (B.3)

where the conjugate matrices are given by S̄↵�
m = Sm

↵�
.

Scalar color-sextet �6 = (6, 1, 1/3)

Let us start the study of the tree-level mediators listed in Eq. (4.1) with the singlet sextet diquark
�6 = (6,1, 1/3). This state has also been studied in [44, 69]. The relevant interaction Lagragian
is:

L � yLij�
↵�†
6 q̄c,(↵|

Li
(i�2)q

|�)
Lj

+ yRij�
↵�†
6 ūc(↵|

Ri
d|�)
Rj

+ h.c. , (B.4)

2Flavor matrices xij are arbitrary complex matrices unless q = q0 when xij is symmetric for scalar sextet, anti-
symmetric for scalar triplet, and Hermitian for real vector singlet and octet where +h.c. is removed from the lagrangian.
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No�F = 2 processes are generated at tree-level. In terms of the a’s coefficients, one has (keeping
into account the symmetricity of yqq):

acb↵uVLL
= �4

3
VLL
RGEVciV

⇤
uj

yqq⇤
j3 yqq

i↵

M2
�3

,
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3
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ydu⇤31 yqq
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�3

,

acb↵uSLL
= �2

3
SRGEVui

ydu⇤
↵2 yqq

i3

M2
�3

,

(B.9)

where VLL
RGE ⇡ 1.56 and SRGE ⇡ 4.02 for M�3 = 1 TeV. We consider two possible coupling

structures to fit the anomaly.
1) Benchmark VLL - Setting ydu = 0, we only generate the aVLL coefficients. To minimise

the impact of dijet bounds we must avoid a strong CKM suppression in the low-energy coefficients.
This can be achieved with three non-vanishing couplings:

acbduVLL
= �1.98

yqq⇤13 yqq12
M2
�3

⇡ 0.23Vud

TeV2 , acbsuVLL
=

�1.98yqq⇤13 yqq22 + 0.46yqq⇤13 yqq21
M2
�3

⇡ 0.24Vus

TeV2 .

(B.10)
Note that the coupling to third generation yqq13 induces a decay of �3 to tops, which will put a
constraint on the model even stronger than the dijet one.

2) Benchmark SRR - If the only non-zero RH coupling is ydu31 , then acb↵u
SLL

= 0 and we could
get a good fit via the aSRR coefficients. A strong CKM suppression is avoided with the couplings:

acbduSRR
= �2.6

yqq12y
du⇤
31

M2
�3

⇡ 0.26Vud

TeV2 , acbsuSRR
=

(�2.6yqq22 + 0.60yqq12)y
du⇤
31

M2
�3

⇡ 0.31Vus

TeV2 . (B.11)

The best-fit for the anomalies is obtained for yqq22 ⇡ 0.50yqq12. In this scenario the coupling to
the top quark is suppressed by Vts, strongly reducing the relative branching ratio and thus the
corresponding constraints. It is thus more favorable than the VLL benchmark.

Scalar color-triplet 3 = (3̄, 3, 1/3)

This scalar couples to quarks as

L 3 � yqq
ij
✏↵�� 

A↵

3 q̄�
Li
�A(i�2)q

c �

Lj
+ h.c. , (B.12)

where yqq
ij

is an antisymmetric matrix. The SMEFT coefficients generated integrating out this state
at tree-level are [58]:

[C(1)
qq ]ijkl = 3[C(3)

qq ]ijkl = 3
yqq
ki
yqq⇤
lj

2M2
 3

. (B.13)

No �F = 2 processes are generated at tree-level, since �3 couples up to down quarks only. A
potentially good benchmark to fit the anomaly is with two non-vanishing couplings yqq12 and yqq23,
giving:

acbduVLL
=

4

3
VLL
RGEV

⇤
usVcs

yqq⇤23 yqq12
M2
 3

, acbsuVLL
=

4

3
VLL
RGEV

⇤
us

yqq⇤23 (�Vcdy
qq

12 + Vcby
qq

23)

M2
 3

. (B.14)
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High-pT tails at LHC are directly 
sensitive to all flavour-violating 
couplings.


