Resonant leptoquark production

LHC applications \& constraints on B-physics anomalies

50: ATLAS Higgs discovery

$5 \sigma: b \rightarrow s$ anomalies

\pm order 100 other observables

$5 \sigma: b \rightarrow s$ anomalies

受 10 而

While $b \rightarrow s$ anomalies may have similar significance than data that led to Higgs discovery, there are at least two important differences. First, Higgs has been discovered by two independent experiments \& second Higgs has been detected by observing a resonance in two different final states. Case of flavour anomalies would be significantly stronger IMHO, if ATLAS/CMS would also see hints of them, in best-case scenario by finding a bump in a high- $\mathrm{p}_{\mathbf{T}}$ search

\pm order 100 other observables

Leptoquark (LQ) search strategies @ the LHC

But @ LHC no resonant LQ production ...

... since a proton consists of quarks \& gluons

QFT to the rescue!

Proton has a little bit of photons \& leptons!

Resonant LQ production @ the LHC

At 13 TeV LHC, 9 events per $100 \mathrm{fb}^{-1}$ for minimal scalar LQ of $\mathrm{M}=3 \mathrm{TeV} \& \lambda_{\mathrm{eu}}=1$

Resonant LQ production @ the LHC

Suppressed by $E_{T, \text { miss }}$ requirement

Resonant LQ production @ the LHC

Sum over backgrounds is a steeply falling distribution, while signal exhibits a narrow peak

LHC limits on $\mathbf{1 s t}^{\text {st }} \boldsymbol{2} \mathbf{2}^{\text {nd }}$ generation LQs

LHC limits on $\mathbf{1 s t}^{\text {st }} \boldsymbol{2} \mathbf{2}^{\text {nd }}$ generation LQs

t-channel DrellYan (DY)

LHC limits on $1^{\text {st }} \boldsymbol{\&} \mathbf{2}^{\text {nd }}$ generation LQs

single LQ production (SP)

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

resonant LQ production

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

resonant LQ production

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

LHC limits on $\mathbf{1 s t}^{\text {st }} \mathbf{2}^{\text {nd }}$ generation LQs

$$
\cdots 36 \mathrm{fb}^{-1}-139 \mathrm{fb}^{-1}--300 \mathrm{fb}^{-1} \quad \cdots 3 \mathrm{ab}^{-1}
$$

measuren
e

Given discovery reach of resonant LQ signature, dedicated searches for final states with a light lepton \& a light-flavour jet
should be added to exotics search canon of ATLAS \& CMS

Simplified models for B anomalies

$$
\lambda_{i j}^{q} \lambda_{\alpha \beta}^{l}\left(C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right)
$$

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	$B^{\prime}=(1,1,0)$	\checkmark	X
	$W^{\prime}=(1,3,0)$	X	\checkmark
Scalar leptoquarks	$S_{1}=(\overline{3}, 1,1 / 3)$	X	\checkmark
	$S_{3}=(\overline{3}, 3,1 / 3)$	\checkmark	X
Vector leptoquarks	$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark
	$U_{3}=(3,3,2 / 3)$	\checkmark	\mathbf{X}

$b \rightarrow s(b \rightarrow c)$ anomalies alone can be accommodated by several simple single-mediator models

Simplified models for B anomalies

$$
\lambda_{i j}^{q} \lambda_{\alpha \beta}^{l}\left(C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right)
$$

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	$B^{\prime}=(1,1,0)$	\checkmark	\mathbf{X}
	$W^{\prime}=(1,3,0)$	\mathbf{X}	\checkmark
Scalar leptoquarks	$S_{1}=(\overline{3}, 1,1 / 3)$	X	\checkmark
	$S_{3}=(\overline{3}, 3,1 / 3)$	\checkmark	\mathbf{X}
Vector leptoquarks	$U_{1}=(3,1,2 / 3)$	\checkmark	\checkmark
	$U_{3}=(3,3,2 / 3)$	\checkmark	\mathbf{X}

U_{1} singlet vector LQ is the only single-mediator model that can explain both sets of anomalies

Singlet vector LQ models for B anomalies

$$
\mathcal{L} \supset \frac{g_{U}}{\sqrt{2}}\left[\beta_{L}^{i j} \bar{Q}_{L}^{i, a} \gamma_{\mu} L_{L}^{j}+\beta_{R}^{i j} \bar{d}_{R}^{i, a} \gamma_{\mu} \ell_{R}^{j}\right] U^{\mu, a}+\text { h.c. }, \quad\left|\beta_{L}^{22}\right| \lesssim\left|\beta_{L}^{32}\right| \ll\left(\beta_{L}^{23}\right) \lesssim\left(\beta_{L}^{33}\right)=\mathcal{O}(1)
$$

Parameters		Branching ratios			
β_{L}^{33}	β_{L}^{23}	$\mathrm{BR}\left(U \rightarrow b \tau^{+}\right)$	$\mathrm{BR}\left(U \rightarrow t \bar{\nu}_{\tau}\right)$	$\mathrm{BR}\left(U \rightarrow s \tau^{+}\right)$	$\mathrm{BR}\left(U \rightarrow c \bar{\nu}_{\tau}\right)$
1	0	51%	49%	0%	0%
1	1	25%	22%	25%	27%

$$
b+\tau
$$

signature
mono-top
signature
mono-jet signature

LQ contributions to $\mathbf{b}+\mathbf{\tau}$ signature

For $\beta_{L}^{23}=0, b+\tau$ signal arises only from $2 \rightarrow 2$ process, while for $\beta_{L}^{23} \neq 0$ also $2 \rightarrow 3$ scattering is relevant. Since two topologies lead to final states with very different kinematic features, it is essential to develop two separate search strategies for them

Kinematic distributions of b+t signal

LHC $14 \mathrm{TeV}, \mathrm{b}+\tau$

LHC $14 \mathrm{TeV}, \mathrm{b}+\tau$

Kinematic distributions of b+t signal

Kinematic distributions of $b+\tau$ signal

$b+\tau$ constraints from $2 \rightarrow 2 \& 2 \rightarrow 3$ signal

Constraints from new LQ search strategies

Constraints from new LQ search strategies

Constraints from new LQ search strategies

Summary

- Precision determination of lepton PDFs opens up new ways to test SM (e.g. I It \pm production) \& to search for new physics @ the LHC
- Resonant LQ production allows to probe so far unexplored parameter space \& has discovery potential
- Further theoretical developments needed to achieve next-to-leading order (NLO) plus parton shower (PS) accuracy for fiducial LQ cross sections

LQ searches triggered by B anomalies

Same sign lepton-pair production @ LHC

Signal events after cuts:

$$
\begin{aligned}
& N_{H L-L H C}\left(e^{-} e^{-}\right) \simeq 700 \\
& N_{H L-L H C}\left(\mu^{-} \mu^{-}\right) \simeq 550 \\
& N_{H L-L H C}\left(\tau^{-}-\tau^{-}\right) \simeq 250
\end{aligned}
$$

Dominant SM background from W-Wproduction after same cuts close to 0

Simulation of $\mathbf{1 s t}^{\text {st }} \boldsymbol{2} \mathbf{2}^{\text {nd }}$ resonant LQ signals

- Since PYTHIA currently cannot handle incoming leptonic partons, initial-state leptons have been replaced by photons to shower events. Our simulations do thus not include leptons but quarks from photon splitting in PS backward evolution
- As a result, jet- \& lepton-veto induce a mismodelling of signal strength. By studying process qy \rightarrow LQI $\rightarrow \mathrm{ql}^{+1}$-, we estimate this effect to be of $\mathrm{O}(10 \%) \&$ therefore to only mildly affect derived LQ limits
- Above PS issue needs to be resolved before NLO QCD \& QED corrections for LQ signal can be correctly included in differential fashion

Mono-top \& mono-jet distributions

Prospects of LQ search strategies

