Uli Haisch, MPI Munich Beyond the Flavour Anomalies II, 22.04.21

Resonant leptoquark production LHC applications & constraints on B-physics anomalies

5σ: ATLAS Higgs discovery

[ATLAS, Science 338 (2012) 1576]

[LHCb, JHEP 08 (2017), 055; PRL 125 (2020) 011802; ...; global fits by many theorists]

order 100 other observables

While b → s anomalies may have similar significance than data that led to Higgs discovery, there are at least two important differences. First, Higgs has been discovered by two independent experiments & second Higgs has been detected by observing a resonance in two different final states. Case of flavour anomalies would be significantly stronger IMHO, if ATLAS/CMS would also see hints of them, in best-case scenario by finding a bump in a high-p_T search

[LHCb, JHEP 08 (2017), 055; PRL 125 (2020) 011802; ...; global fits by many theorists]

+ order 100 other observables

Leptoquark (LQ) search strategies @ the LHC

[sketch adopted from Dorsner & Greljo, JHEP 05 (2018) 126]

t-channel Drell-Yan

But @ LHC no resonant LQ production ...

... since a proton consists of quarks & gluons

QFT to the rescue!

 ${\mathcal X}$

Proton has a little bit of photons & leptons!

[Manohar et al. PRL 117 (2016) 24; JHEP 12 (2017) 046; Buonocore et al., JHEP 08 (2020) 019]

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

LHC, $\sqrt{s} = 13$ TeV

At 13 TeV LHC, 9 events per 100 fb⁻¹ for minimal scalar LQ of M = 3 TeV & $\lambda_{eu} = 1$

Suppressed by ET,miss requirement & jet veto

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

LHC, $\sqrt{s} = 13$ TeV

Suppressed by ET,miss requirement & jet veto

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

LHC, $\sqrt{s} = 13$ TeV 100 — WW $- W^-Z + tW$ events/bin/100 fb⁻¹ 10 — LQ 0.10 0.01 4000 1000 2000 3000 5000 m_{ej} [GeV]

Irreducible background particularly relevant @ high invariant lepton-jet mass

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

Suppressed by lepton veto

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

Suppressed by ET,miss requirement

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

Sum over backgrounds is a steeply falling distribution, while signal exhibits a narrow peak

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

19

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

--- 36 fb⁻¹

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

 \cdots 36 fb⁻¹ \longrightarrow 139 fb⁻¹ \longrightarrow 300 fb⁻¹ \cdots 3 ab⁻¹

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

 $-\cdots$ 36 fb⁻¹ $-\cdots$ 139 fb⁻¹ $-\cdots$ 300 fb⁻¹ \cdots 3 ab⁻¹

Given discovery reach of resonant LQ signature, dedicated searches for final states with a light lepton & a light-flavour jet should be added to exotics search canon of ATLAS & CMS

weak (measurem

LQ

[Buonocore, UH, Nason, Tramontano & Zanderighi, PRL 125 (2020) 23]

 \cdots 36 fb⁻¹ \longrightarrow 139 fb⁻¹ \longrightarrow 300 fb⁻¹ \cdots 3 ab⁻¹

- PP, 36 fb⁻¹ - DY, 36 fb⁻¹

- SP, 36 fb⁻¹ --- Q_W

2000 3000 4000 5000 M [GeV]

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, JHEP 11 (2017) 044]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	B' = (1, 1, 0)	\checkmark	×
	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\bar{3}, 1, 1/3)$	×	\checkmark
	$S_3 = (\bar{3}, 3, 1/3)$	\checkmark	×
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	×

 $b \rightarrow s (b \rightarrow c)$ anomalies alone can be accommodated by several simple single-mediator models

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, JHEP 11 (2017) 044]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
	B' = (1, 1, 0)	\checkmark	X
Colorless vectors	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\bar{3}, 1, 1/3)$	×	\checkmark
	$S_3 = (\bar{3}, 3, 1/3)$	\checkmark	×
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	×

U₁ singlet vector LQ is the only single-mediator model that can explain both sets of anomalies

Singlet vector LQ models for B anomalies

Parameters		Branching ratios			
β_L^{33}	eta_L^{23}	$BR\left(U \to b\tau^+\right)$	$\mathrm{BR}\left(U \to t\bar{\nu}_{\tau}\right)$	$BR\left(U \to s\tau^+\right)$	$\mathrm{BR}\left(U \to c \bar{\nu}_{\tau}\right)$
1	0	51%	49%	0%	0%
1	1	25%	22%	25%	27%

$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}_L^{i,a} \gamma_\mu L_L^j + \beta_R^{ij} \bar{d}_R^{i,a} \gamma_\mu \ell_R^j \right] U^{\mu,a} + \text{h.c.}, \qquad \left| \beta_L^{22} \right| \lesssim \left| \beta_L^{32} \right| \ll \left| \beta_L^{23} \right| \lesssim \left| \beta_L^{33} \right| \lesssim \left| \beta_L^{33} \right| = \mathcal{O}(1)$

mono-top signature

mono-jet signature

LQ contributions to b + t signature

[UH & Polesello, 2012.11474]

For $\beta_L^{23} = 0$, b + τ signal arises only from 2 \rightarrow 2 process, while for $\beta_L^{23} \neq 0$ also 2 \rightarrow 3 scattering is relevant. Since two topologies lead to final states with very different kinematic features, it is essential to develop two separate search strategies for them

Kinematic distributions of b + τ signal

[UH & Polesello, 2012.11474]

Kinematic distributions of b + τ signal

 m_T^{τ} [GeV]

[UH & Polesello, 2012.11474]

 m_T^{τ} [GeV]

Kinematic distributions of b + τ signal

[UH & Polesello, 2012.11474]

 E_{T}^{miss} [GeV]

b + τ constraints from 2 \rightarrow 2 & 2 \rightarrow 3 signal

[UH & Polesello, 2012.11474]

Constraints from new LQ search strategies

[UH & Polesello, 2012.11474]

Constraints from new LQ search strategies

[UH & Polesello, 2012.11474]

Constraints from new LQ search strategies

[UH & Polesello, 2012.11474]

Summary

- Precision determination of lepton PDFs opens up new ways to test SM (e.g. l±l± production) & to search for new physics @ the LHC
- Resonant LQ production allows to probe so far unexplored parameter space & has discovery potential
- Further theoretical developments needed to achieve next-to-leading order (NLO) plus parton shower (PS) accuracy for fiducial LQ cross sections

[very recent progress towards NLO PS by Richardson, unpublished; Greljo & Selimovic, JHEP 03 (2021) 279]

LQ searches triggered by B anomalies

[Bauer & Neubert, PRL 116 (2016) 141802; ATLAS, arXiv:2101.11582]

Same sign lepton-pair production @ LHC

[Buonocore, Nason, Tramontano & Zanderighi, JHEP 08 (2020) 019; ATLAS analysis ongoing]

Signal events after cuts:

 $N_{HL-LHC}(e^{-}e^{-}) \simeq 700,$ $N_{HL-LHC}(\mu^{-}\mu^{-}) \simeq 550,$ $N_{HL-LHC}(\tau^{-}\tau^{-}) \simeq 250$

Dominant SM background from W-Wproduction after same cuts close to 0

Simulation of 1st & 2nd resonant LQ signals

- Since PYTHIA currently cannot handle incoming leptonic partons, initial-state leptons have been replaced by photons to shower events. Our simulations do thus not include leptons but quarks from photon splitting in PS backward evolution
- As a result, jet- & lepton-veto induce a mismodelling of signal strength. By studying process qγ → LQ I → ql+l-, we estimate this effect to be of O(10%) & therefore to only mildly affect derived LQ limits
- Above PS issue needs to be resolved before NLO QCD & QED corrections for LQ signal can be correctly included in differential fashion

Mono-top & mono-jet distributions

Prospects of LQ search strategies

[UH & Polesello, 2012.11474; Cornella et al., 2103.16558]

