$B \rightarrow X \tau \nu$ polarisation measurements

Greg Ciezarek

April 22, 2021

Introduction

- $\mathcal{R}(D^{(*)})$ still hints at possible new physics, updates long overdue...
- If a tension were to be established, question would then be to constrain the spin structure of the enhancement
 - Differential measurements $B \to D^{(*)} \ell \nu$ angular distributions and τ polarisation

Full kinematic basis for $B \rightarrow D^* \tau \nu$

- Full basis for $B \rightarrow D^* \ell \nu$: q^2 and three angles
 - q^2 and E^*_{μ} (lepton energy in B rest frame) is a complete basis for $B \to D^0 \ell \nu$
- ... until the au decays!
 - The θ_ℓ or E_μ^* from the final state decay products is no longer truly θ_ℓ or E_μ^*
 - Bias in part depends on the au polarisation, $m_{
 m miss}^2$ now carries some information about au decay
 - Explaining this is a job for a theorist!

Full kinematic basis for $B \rightarrow D^* \tau \nu$

- Full basis for $B \rightarrow D^* \ell \nu$: q^2 and three angles
 - q^2 and E^*_μ (lepton energy in B rest frame) is a complete basis for $B \to D^0 \ell \nu$
- ... until the au decays!
 - Simpler picture: for a two body (hadronic) decay, hadron helicity angle carries τ spin information
 - Maximum sensitivity for $\tau \to \pi \nu$, greater hadron masses reduce sensitivity: ~ 0.45 for $\tau \to \rho \nu$, ~ 0.1 for $\tau \to \pi \pi \pi \nu$
 - Leptonic decay modes also have lower sensitivity, ~ 0.25

Experimental challenge

- Difficulty: neutrinos 2 for $(au o \pi\pi\pi
 u)
 u$, 3 for $(au o \mu
 u
 u)
 u$
 - No narrow peak to fit (in any distribution)
- Main backgrounds: partially reconstructed B decays
 - $B \to D^* \mu \nu, B \to D^{**} \mu \nu, B \to D^* D(\to \mu X) X \dots$
 - $B \rightarrow D^* \pi \pi \pi X$, $B \rightarrow D^* D (\rightarrow \pi \pi \pi X) X$...
- Also combinatorial, misidentified background

B Factory method

- Traditional methods for measuring these decays rely on $e^+e^- \rightarrow B\overline{B}$ event properties
 - Centre of mass fixed
 - Nothing else produced in event
- "Tag reconstruction"
 - Fully reconstruct other $B \rightarrow$ measurement of signal B kinematics
 - Signal B + other B should be entire event \rightarrow strong rejection against other missing reconstructable particles
- Penalty: sub percent efficiency

- Belle made the first measurement of τ polarisation with $\tau^+ \to \pi^+ \nu$ and $\tau^+ \to \rho^+ \nu$
- Fit variable: energy left over in Calorimeters after tag+signal reconstruction (E $_{\rm ECL})$
 - Independent of the signal dynamics, no model dependence
- Split fit in halves of π or ρ helicity angle, reconstruct polarisation

3. B factory measurements

Belle II $\tau^+ \to \pi^+(\pi^0)\nu$

• This will be a powerful measurement at Belle-II - 7% uncertainty on $P_{\tau}(D^*)$ with 50 ab^{-1} (55% now)

Can you do this at a hadron collider?

- Traditional methods for measuring these decays rely on $e^+e^-
 ightarrow B\overline{B}$ event properties
 - Centre of mass fixed
 - Nothing else produced in event
- In a hadron collider the BB centre of mass isn't fixed → rest of event provides little constraint on the signal B kinematics
 - Event also contains a lot of junk from the proton-proton interaction \rightarrow reconstructing the whole event is meaningless

Needed completely different methods

Fit strategy

Phys. Rev. Lett. 115 (2015) 111803

(日) (四) (王) (日) (日) (日)

- Can use *B* flight direction to measure transverse component of missing momentum
- No way of measuring longitudinal component \rightarrow use approximation to access rest frame kinematics
 - Assume $\gamma \beta_{z, visible} = \gamma \beta_{z, total}$
 - \sim 20% resolution on *B* momentum, long tail on high side
- Can then calculate rest frame quantities $m^2_{missing}$, E_{μ} , q^2

Fit strategy

Phys. Rev. Lett. 115 (2015) 111803

ロト ・ 同ト ・ ヨト ・ ヨト

11/16

- Three dimesional template fit in E_{μ} (left), $m^2_{missing}$ (middle), and q^2
 - Projections of fit to isolated data shown
- All uncertainties on template shapes incorporated in fit:
 - For our systematics, we already have form-factors floating in the fit (with constraints for the helicity suppressed terms)

- Can we extend this fit to a full basis, and measure angular observables/wilson coefficients? Yes full angular analysis planned
 - Big complication signal yield depends on kinematic distributions
 - + τ polarisation changes \rightarrow final state kinematics change \rightarrow signal yield changes
 - Most consistent way to make a measurement everything together
 - Full angular analysis implies measuring both

Angular resolutions for $B \rightarrow D^* \tau \nu$

- Angular resolution for $B \to D^* \mu \nu$, $B \to D^* \tau \nu \ (\tau \to \mu \nu \nu)$
- Tau decay results in loss of information
 - θ_ℓ and χ degraded
 - θ_D about the same $\to D^{*+}(\Lambda_c)$ polarisation related observables maybe a good first target
- These resolutions are challenging, but not impossible

Hammer

Process	Form factor parametrizations
$B \rightarrow D^{(*)} \ell \nu$	ISGW2 [*] [34, 35], BGL [*] [36-38], CLN ^{*‡} [39], BLPR [‡] [16]
$B \rightarrow (D^* \rightarrow D\pi)\ell\nu$	ISGW2*, BGL* [‡] , CLN* [‡] , BLPR [‡]
$B \rightarrow (D^* \rightarrow D\gamma) \ell \nu$	ISGW2*, BGL* [‡] , CLN* [‡] , BLPR [‡]
$\tau \rightarrow \pi \nu$	_
$\tau \rightarrow \ell \nu \nu$	
$\tau \rightarrow 3\pi\nu$	RCT* [40-42]
$B \rightarrow D_0^* \ell \nu$	ISGW2*, LLSW* [43, 44], BLR [‡] [45, 46]
$B \rightarrow D_1^* \ell \nu$	ISGW2*, LLSW*, BLR [‡]
$B \rightarrow D_1 \ell \nu$	ISGW2*, LLSW*, BLB [‡]
$B \rightarrow D_2^* \ell \nu$	ISGW2*, LLSW*, BLR [‡]
$\Lambda_b \rightarrow \Lambda_c \ell \nu$	PCR* [47], BLRS [‡] [48, 49]
Planned for next release	
$B_{(c)} \rightarrow \ell \nu$	MSbar
$B \rightarrow (\rho \rightarrow \pi \pi) \ell \nu$	BCL*, BSZ
$B \rightarrow (\omega \rightarrow \pi \pi \pi) \ell \nu$	BCL*, BSZ
$B_c \rightarrow (J/\psi \rightarrow \ell \ell) \ell \nu$	
$\Lambda_b \rightarrow \Lambda_c^* \ell \nu$	PCR* , BLRS
$\tau \rightarrow 4\pi\nu$	RCT*
$\tau \rightarrow (\rho \rightarrow \pi \pi) \nu$	—

Helicity Amplitude Module for Matrix Element Reweighting

HAMMER website

 ${\bf Table \ 3} \ {\rm Presently \ implemented \ amplitudes \ in \ the \ {\tt Hammer \ library, \ and \ corresponding \ form \ factor \ parametrizations. \ SM-only }$

- HAMMER package allows us to reweight our MC using a histogram expansion, fast enough for us to use in our fits
- Implements physics models for various $B \to X \ell \nu$ processes, including tau polarisation effects

$\tau \to \pi\pi\pi$ at LHCb

LHCb-PAPER-2017-017, LHCb-PAPER-2017-027

15/16

• 3D template fit in BDT, q^2 , tau lifetime to determine signal yield

- BDT contains 3π dalitz information, partially reconstructed kinematics, neutral isolation...
- For the full angular analysis, similar situation to muonic case
 - Slightly better resolution, 10-15% resolution on tau momentum
- Less sensitivity to au polarisation from combined 3π kinematics
 - However, looking at the 3π substructure can buy much of this sensitivity back
 - Phys.Lett. B306 (1993) 411-417, L. Duflot Thesis

Conclusion

- Updates on $\mathcal{R}(D^{(*)})$ are long overdue
- Next step from LHCb is differential measurements
 - Both au polarisation and $B \rightarrow D^{(*)} \ell \nu$ angular information
 - These are an extension of what we are already doing
 - Still complicated measurements, will no doubt also be overdue
- Belle have already demonstrated a polarisation measurement
 - Looking forward to seeing this with Belle-II statistics