Charming new physics

Sebastian Jäger (University of Sussex) Matthew Kenzie (University of Warwick) Durham IPPP b->s I I workshop 22 April 2021

Work with M Kirk, A Lenz, K Leslie:

arXiv:1701.09183, PRD 97 (2018) 1 arXiv:1910.12924, JHEP 03 (2020) 122

Outline

How to observe new physics in $b \to c\bar{c}s$ transitions

Operators & RGE

Lifetime observables Radiative & rare decay: P_5 ' & null tests B $\rightarrow J/\psi$ K_S & CP violation

Wilson coefficient constraints & new physics scale

Charm and new physics

Postulated to explain non-observation of $K_L \rightarrow \mu^+ \mu^-$ (GIM) Discovery key to establishing SM

In B physics, charm appears in leading decays through a partonic $b \rightarrow c\bar{c}s$ transition. Large CKM factor.

Usually one assumes BSM corrections to be negligible.

Is this assumption well grounded in data (or theory)?

exclusive charmful: BR, A_{CP} , S_{CP} precisely measured

- not calculable (HQE is 1/(m_c alpha_s)))

will show a data-driven method Sebastian Jaeger - IPPP b->s I I anomalies

22/04/2021

workshop

Rare & radiative decays

Standard Model: tree-level W exchange

 $C_7^{\text{eff}}(4.6 \text{GeV}) = 0.02 C_1(M_W) - 0.19 C_2(M_W)$

 $C_9(4.6 \text{GeV}) = 8.48 C_1(M_W) + 1.96 C_2(M_W)$

In SM: O(50%) in both cases comes from virtual charm ^{22/04/2021} vorkshop

5

Rare & radiative decays: experiment

Rare B-decay data shows tensions with SM

1) Lepton-universality breaking - needs lepton-flavour specific effect 2) $B_s \rightarrow \mu \mu$

3) angular distribution (P_5 ') - could be lepton-universal C_9 -type effect

Charming BSM scenario

SJ, Kirk, Lenz, Leslie arxiv:1701.09183

As long as NP mass scale M is >(>) mb, most general BSM in $b \rightarrow c\bar{c}s$ **model-independently** captured by an effective Hamiltonian with 20 operators/Wilson coefficients (including SM)

$$Q_1^c = (\bar{c}_L^i \gamma_\mu b_L^j) (\bar{s}_L^j \gamma^\mu c_L^i),$$

$$Q_3^c = (\bar{c}_R^i b_L^j)(\bar{s}_L^j c_R^i),$$

$$Q_5^c = (\bar{c}_R^i \gamma_\mu b_R^j) (\bar{s}_L^j \gamma^\mu c_L^i),$$

$$Q_7^c = (\bar{c}_L^i b_R^j) (\bar{s}_L^j c_R^i),$$

$$Q_9^c = (\bar{c}_L^i \sigma_{\mu\nu} b_R^j) (\bar{s}_L^j \sigma^{\mu\nu} c_R^i),$$

$$Q_2^c = (\bar{c}_L^i \gamma_\mu b_L^i) (\bar{s}_L^j \gamma^\mu c_L^j),$$
$$Q_4^c = (\bar{c}_R^i b_L^i) (\bar{s}_L^j c_R^j),$$

$$\begin{aligned} Q_6^c &= (\bar{c}_R^i \gamma_\mu b_R^i) (\bar{s}_L^j \gamma^\mu c_L^j), \\ Q_8^c &= (\bar{c}_L^i b_R^i) (\bar{s}_L^j c_R^j), \end{aligned}$$

$$Q_{10}^c = (\bar{c}_L^i \sigma_{\mu\nu} b_R^i) (\bar{s}_L^j \sigma^{\mu\nu} c_R^j),$$

+ parity conjugates

RG evolution - numerical

SJ, Kirk, Lenz, Leslie, arxiv:1701.09183 and arXiv:1910.12924,

Some elements first arise at two loops – still give important constraints.

$C_1^c(\mu_b)$		1.1	-0.27	0	0	0	0	0	0	0	0	١	
$C_2^c(\mu_b)$		-0.27	1.1	0	0	0	0	0	0	0	0		$C_1^c(M_W)$
$C_3^c(\mu_b)$		0	0	0.92	0	0	0	0	0	0	0		$C_2^c(M_W)$
$C_4^c(\mu_b)$		0	0	0.33	1.9	0	0	0	0	0	0		$C_3^c(M_W)$
$C_5^c(\mu_b)$		0	0	0	0	1.9	0.33	0	0	0	0		$C_4^c(M_W)$
$C_6^c(\mu_b)$		0	0	0	0	0	0.92	0	0	0	0		$C_5^c(M_W)$
$C_7^c(\mu_b)$	-	0	0	0	0	0	0	1.0	0.05	2.70	1.70		$C_6^c(M_W)$
$C_8^c(\mu_b)$		0	0	0	0	0	0	0.37	2.0	2.30	-0.55		$C_7^c(M_W)$
$C_9^c(\mu_b)$		0	0	0	0	0	0	0.07	0.07	1.80	0.04		$C_8^c(M_W)$
$C_{10}^c(\mu_b)$		0	0	0	0	0	0	0.01	-0.02	-0.29	0.82		$C_9^c(M_W)$
$C_{7\gamma}^{\text{eff}}(\mu_b)$		0.02	-0.19	-0.015	-0.13	0.56	0.17	-1.0	-0.47	4.00	0.70	Þ	$C_{10}^{c}(M_{W})$
$C_{9V}(\mu_b)$		8.50	2.10	-4.30	-2.00	0	0	0	0	0	0		

Enormous RG effects - can accommodate P₅'

SJ, Kirk, Lenz, Leslie arxiv:1701.09183

RH(primed) 4-quark ops constrained by both C₇' and C₉'

22/04/2021

Sebastian Jaeger - IPPP b->s | | anomalies

workshop

Observables/constraints

Lifetime ratio $\frac{\tau(B_s)}{\tau(B_d)} = 0.9994 \pm 0.0025$

Width difference $\Delta \Gamma_s^{exp} = 0.088 \pm 0.006 \, \mathrm{ps}^{-1}$

Inclusive radiative decay $\mathcal{B}(\bar{B} \to X_s \gamma)^{exp} = (3.32 \pm 0.15) \times 10^{-4}$

'Pseudo-observables:' fitted Wilson coefficients from (mainly) exclusive radiative and semileptonic decay

 $C'_{7\gamma} = 0.018 \pm 0.037$ Aebischer et al arXiv:1903.10434 $C'_{9V} = 0.09 \pm 0.15$ Paul & Straub arXiv:1608.02556

Sebastian Jaeger - IPPP b->s | | anomalies workshop

Global analysis

SJ, Kirk, Lenz, Leslie, arXiv:1910.12924

'LH currents' – strong mixing into C₉

Blue - radiative decay, green - lifetime ratio, brown - width difference

Dashed/solid black: C9(BSM)

22/04/2021

Sebastian Jaeger - IPPP b->s | | anomalies

workshop

Global analysis

SJ, Kirk, Lenz, Leslie, arXiv:1910.12924

'LH currents' – strong mixing into dipole

Blue - radiative decay, green - lifetime ratio, brown - width difference

Sebastian Jaeger - IPPP b->s I l anomalies workshop

Global analysis

SJ, Kirk, Lenz, Leslie, arXiv:1910.12924

'RH currents' - strong mixing into dipole

Blue - radiative decay, green - lifetime ratio, brown - lifetime difference

Sebastian Jaeger - IPPP b->s I l anomalies workshop

Lower bounds on NP scale

Delta C<0

Delta C>0

SJ, Kirk, Lenz, Leslie, arXiv:1910.12924

 $\Lambda_{-}(\text{TeV})$ $\Delta \chi^2 \leq 1$ Coeff. Λ_{+} (TeV) ΔC_5 [-0.01, 0.01]9.710.5[-0.02, 0.02]5.65.8 ΔC_6 ΔC_7 -0.01, 0.018.8 9.7 ΔC_8 -0.02, 0.026.26.9 ΔC_9 -0.001, 0.00522.312.6 ΔC_{10} [0.01, 0.05]3.8- $\Delta C'_1$ -0.01, 0.025.511.9 $\Delta C'_2$ -0.04, 0.094.52.8 $\Delta C'_3$ -0.04, 0.024.57.0 $\Delta C'_4$ 3.25.1-0.07, 0.03 $\Delta C'_{5}$ -0.02, 0.035.94.8 $\Delta C'_6$ -0.07, 0.103.32.8 $\Delta C'_7$ -0.03, 0.025.26.6 $\Delta C'_8$ -0.05, 0.04] 3.74.3 $\Delta C'_9$ [0.002, 0.010]8.6 --0.08, -0.06], [0.02, 0.05] $\Delta C'_{10}$ 7.13.5

Sebastian Jaeger - IPPP b->s | | anomalies

$B \rightarrow J/\psi K_S \& CP violation$

If new physics in $b \rightarrow c\bar{c}s$ is CP-violating, it will impact on the precisely measured exclusive $B \rightarrow J/\psi K_s$ decays.

Three precisely observables:

$$S_{J/\psi K_S} = 0.699 \pm 0.017$$

 $C_{J/\psi K_S} = -0.005 \pm 0.015$
 $\mathcal{B}(B_d \to J/\psi K_S) = (8.73 \pm 0.32) \times 10^{-4}$

Note: The impact on the semileptonic asymmetry turns out to be comparably small (will show).

Exclusive B-decay

Exclusive charmful hadronic B-decays suffer from large hadronic uncertainties

e.g data suggests corrections to (calculable) naïve factorisation O(100%)

Weak sensitivity to BSM contributions, especially if CPconserving

$B \rightarrow J/\psi K_S$: theory

Problem: hadronic matrix elements $\langle J/\psi K_S | Q_i | B \rangle$ Heavy-quark expansion uncontrolled expansion parameter is $\Lambda_{\rm QCD}/(\alpha_s m_c)$ But $\langle J/\psi K_S | Q_1 | B \rangle = \frac{M_B p_c}{2} f_{J/\psi} F^{B \to K} \left(1 + \frac{1}{N_c^2} \right)$

factorizes naively, up to colour-suppressed corrections.

If new physics only affects C₁ or C₂, the incalculable hadronic dynamics is largely contained in a single complex ratio $r_{21} = \langle Q_2 \rangle / \langle Q_1 \rangle$

e.g.
$$\lambda_{J/\psi K_S} = \frac{q}{p} \frac{\bar{A}}{A} \propto \frac{C_1^* + r_{21}C_2^*}{C_1 + r_{21}C_2}$$

4 unknowns (Re C, Im C, Re r_{21} , Im r_{21}) : fit to data !

22/04/2021

Sebastian Jaeger - IPPP b->s | | anomalies workshop

Global analysis: CP-violating case

SJ, Kirk, Lenz, Leslie, arXiv:1910.12924

22/04/2021

workshop

Future prospects for mixing

SJ, Kirk, Lenz, Leslie arxiv:1701.09183

Assumptions: 5% combined (th/exp) error on width difference 0.001 combined error on lifetime ratio

22/04/2021

workshop

What measurements are these?

- Observables relevant for tree-level WCs in $b \rightarrow c$ (and $b \rightarrow u$) transitions
 - Lifetime ratio, $\tau_{B_s^0}/\tau_{B^0}$
 - Mass and width differences, Δm_s , Δm_d , $\Delta \Gamma_s$, $\Delta \Gamma_d$
 - Semileptonic asymmetries, a^s_{sl}, a^d_{sl}
 - ▶ Time dependent CPV in $B^0 \rightarrow hh(\alpha)$, $B^0 \rightarrow J/\psi K^0_S(\beta)$ and $B^0_s \rightarrow J/\psi \phi(\beta_s)$ and similar
 - Time integrated CPV in $B^{\pm} \rightarrow D h^{\pm} (\gamma)$
 - Probably others I've forgotten
- I don't have time to cover all so will just talk about a couple
- A few general points to bare in mind:
 - Belle-II cannot do much with the B⁰_s
 - CMS / ATLAS are competitive with LHCb in decays with J/ψ
 - For most CPV measurements the LHCb upgrade(s) designs strive to ensure measurements do not become systematically saturated
 - This is easy to say now, in practise will be very difficult for some measurements at 300 fb⁻¹
 - Understanding time-acceptance is vital
 - Projections are very reliant on maintaining / improving flavour tagging performance

B^0 and B_s^0 mixing

Lifetime ratios - [arXiv:1912.07621]

Tension in $\Delta \Gamma_s$ world average - [arXiv:1909.12524] [arXiv:1701.09183]

- Eventually (LHCb+Belle-II) $\Delta\Gamma_d \neq 0$ may be observable
- LHCb measurement is at 1 fb⁻¹- how desirable is an update?

Semileptonic asymmetries

Time-dependent CPV - ϕ_s

- Understanding of penguin pollution important as precision approaches SM prediction
- ► Exploitation of SU(3) partner modes, e.g. $B^0 \rightarrow J/\psi \rho$, $B^0_s \rightarrow J/\psi \overline{K}^{*0}$
- Measurements of γ get so good that measurement of ϕ_s in $B_s^0 \to D_s^- K^+$ gets to $\sim 0.019 \text{ rad}$ (current WA precision)

$$\blacktriangleright$$
 γ at 300 fb $^{-1}$ \sim 0.4°, ($\gamma - \phi_s$) \sim 1°

• Long term goal for $sin(2\beta)$ precision is \sim 0.002 (LHCb+Belle-II)

$\overline{B^0_{(s)}} o K^{*0} \overline{K}^{*0}$ - going slightly off topic

- If there is NP in $b \to s \ell^+ \ell^-$ transitions then reasonable to expect something in hadronic $b \to sq\overline{q}$
- ▶ Decays like $B_s^0 \to K^{*0} \overline{K}^{*0}$ and $B_s^0 \to \phi \phi$ also provide *loop-only* access to ϕ_s
- B⁰_(s) → K^{*0}K̄^{*0} almost unique in that the U-spin transformation leaves the final state unchanged
- Gives access to relatively clean observables like $L_{K^{*0}\overline{K}^{*0}}$ equivalent to R_K
 - Decay rate ratio of $B_s^0 \to K^{*0}\overline{K}^{*0}$ and $B^0 \to K^{*0}\overline{K}^{*0}$

[arXiv:2011.07867]

Sequels that are better than the original?

The Godfather Part II

The Empire Strikes Back

Aliens

Beyond the Flavour Anomalies II

Beyond the Flavour Anomalies?

Conclusions

New physics should affect the $\,b
ightarrow c \bar{c} s\,$ transitions

Large RG mixing into dipoles and semileptonic operators

Complementary sensitivity from radiative decay, $B \rightarrow K^*II$ angular, B lifetime differences, $B \rightarrow J/\psi K_s$.

Simultaneous fit to NP and $B \rightarrow J/\psi K_S$ hadronic matrix elements possible (for restricted operator basis). Data can accommodate 'unexpected' hadronic matrix element values - including naïve-factorization ones!

Bounds on new physics scales range from few TeV to >10 TeV depending on the vertex.

More precise results on lifetime observables would be useful

22/04/2021

Backup

Def. new physics scale

$$\Lambda_{NP}^2 \ge \frac{\sqrt{2}}{4G_F} \frac{1}{V_{cb}V_{cs}^*} \frac{1}{|\Delta C_i(M_W)|}$$