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Introduction



b — sf¥ effective Hamiltonian 1/16

transitions described by the effective Hamiltonian

I
E

4G
H (b — s68) = —Tz”vtbvt’;z C,(1) 0 () u
i=1

main contributions to Bs) = {K™), ¢}££ in the SM given by local operators 0,, 0, 04

0., =
7 7 1e6m2

Og = (SLV”bL)Z (fyﬂf) O10 = (SLV”bL)Z (fyu]/sf)
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Charm loop in B » K(*)¢¢ 26

additional non-local contributions come from 05 and 05 combined with the e.m. current
(charm-loop contribution)

01 = (§LV”CL)(C_LVubL) 0z = (EZyﬂci)(Eiyubi)




Decay amplitude for B — K*)££ decays 316

calculate decay amplitudes precisely to probe the SM
(B-anomalies: NP or underestimated systematic uncertainties?)

L.u
A(B -~ KO2) = 0 (Gl + Co) Fu (0, P49,

local hadronic matrix elements
Fu= (K(*)(k)|07,9,10|3(k + CI)>

non-local hadronic matrix elements

Hy= i j d*x e' (K (k)| T{jg™ (x), (C,0f + C,05)(0)}|B(k + q))



Form factors definitions 4/16

form factors (FFs) parametrize hadronic matrix elements
FFs are functions of the momentum transferred squared g*

local FFs
Fuleq) = ) ik, @) F2(a%)
A

computed with Lattice QCD (high g#) and sum rules (low g#) with good precision ~10%

non-local FFs
Huk,q) = ) SHk, @)?,(a)
A

calculated using an Operator Product Expansion (OPE)

large uncertainties — reduce uncertainties for a better understanding of rare B decays



OPE for non-local matrix elements 5/16

two types of OPEs for the non-local FFs H,

2
1. local OPE for |g*| 2 mj (Grinstein/Piryol 2004] [Beylich/Buchalla/Feldmann 2011]

H;(q%) = Q(@)F(@®) + C1(a*)Fa(g?) + -+



OPE for non-local matrix elements 5/16

two types of OPEs for the non-local FFs H;

1. local OPE for |g?| Z mj (Grinstein/Piryol 2004] [Beylich/Buchalla/Feldmann 2011]
2\ — 2 2 / 2\ T 2
H;(q%) = C(q)Fr(q7) + C(q7)F(q7) + -
2. light-cone OPE for g% « 4m¢ [Khodjamirian/Mannel/Pivovarov/Wang 2010 (KMPW2010)]

H,(q%) = C(q*)Fy(q%) + (,}(qz)]]/l(qz) + ...

leading term coincides in the two OPEs




Our main results 6/16

1. calculation of the next-to-leading term in the light-cone OPE Vv, using for the first time the full
set B-meson distribution amplitudes in By = {K®), ¢} ¢~ and B(s) —» {K*, ¢}y decays

we obtain results two orders of magnitude smaller than KMPW2010



Our main results 6/16

calculation of the next-to-leading term in the light-cone OPE V; using for the first time the full
set B-meson distribution amplitudes in By = {K®), ¢} ¢~ and B(s) —» {K*, ¢}y decays

we obtain results two orders of magnitude smaller than KMPW2010

first model independent constraints on the non-local FFs #£; using dispersive bounds

constrain the coefficients of a new parametrization for #£, to interpolate in the physical
region relevant for B decays and to compare with experimental measurements

light-cone OPE g2 =0 interpolate (exp. data) local OPE



Subleading corrections to H,



Soft-gluon contribution to the charm loop 716

expand H, in a light-cone OPE for g% « 4m2
H;(q%) = C1(q*)Fr(g®) + + -



Soft-gluon contribution to the charm loop 771

expand 7, in a light-cone OPE for g% <« 4m¢
H,(q%) = CL(q®)F(qD) + C (g V, (%) + -

leading power (LO in ay)

QW

+ hard gluons (ay) corrections

@ @W
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Soft-gluon contribution to the charm loop 76

expand 7, in a light-cone OPE for g% <« 4m¢
H,(q%) = CL(q®)F(qD) + C (g V, (%) + -

leading power (LO in a) Sor]:to?wl—upoer;tfjcr)tr)raet?\?ém
vaw = not a, suppressed

+ hard gluons (ay) corrections

@ @W




Light-cone sum rules in a nutshell

light-cone sum rules (LCSRs) are a method to calculate hadronic matrix elements

method based on:

—

unitarity and analyticity

quark-hadron duality

light-cone OPE

8/16



Light-cone sum rules in a nutshell

light-cone sum rules (LCSRs) are a method to calculate hadronic matrix elements

—

method based on:

8/16

unitarity and analyticity

quark-hadron duality

light-cone OPE

method already applied in KMPW?2010 for the matrix elements 17,(g%) in B » K™

we also apply it to B = ¢

we revisit previous calculations to include higher order corrections

in B-to-vacuum matrix elements

computation of these non-local matrix elements using Lattice QCD not possible yet



Light-cone distribution amplitudes /16

the B-meson light-cone distribution amplitudes (LCDAs) are needed to compute the LCSRs
no two-particle contribution
three-particle contribution — 4 independent LCDAs in KMPW2010

(0]d(x)Gyp(uy)hy, (0)|B ()
_ fempg
4

. Xy Y,
TriysPs |(vavs — vaVa) Pa — Wy) — i02pWy — (VaVp — YpVa) —— + (Va¥p — Vp¥a) ——| { (x, uy)
v y v y



Light-cone distribution amplitudes /16

the B-meson light-cone distribution amplitudes (LCDAs) are needed to compute the LCSRs
no two-particle contribution

three-particle contribution — 8 independent LCDAs in Braun/Ji/Manashov 2017

(0]d(x)Gop(wy)h, (0)|B(v))

femp . X4 W +Yy
== Tr¥sPe | (va¥p — VpYa) (¥a — W) — ioap®y — (Yavp — YBva)ﬂ + (Va¥p = Yp¥a) = 5
X, Y, w Z
(x, uy)

organize LCDAs in a twist expansion (twist = dimension — spin) — Wy, Wy, X4, Y4, ... have no definite
higher twists are power of Ap,q/mp suppressed
we include contributions up to twist 4




Results and comparison 10/16

ACo(q? = 1 GeV?) KMPW2010 GvDV2019
leading power (LO ag) 0.27 0.27
B — K¢ —0.091385 (1.9%3%)-107*
0.670:2 (1.2194)-1073
B > K*¢¢ 0.6%0% (2.1%37)- 1073
1.0%58 (3.0119)-1073
B, = ¢t? — see paper

* our results are two orders of magnitude smaller than in KMWP2010 (= smaller unc.)
 we can reproduce the analytical results given in KMWP2010 and the differences are well understood

 quick convergence of the light-cone OPE



Why such different results? 1/16

KMPW10:
A% = 2% = 0.31 + 0.15 GeV?
= twist 3 does not contribute
different inputs: LCDAs models depend on 1%, 1% —
we use 142 = 0.03 £+ 0.02 GeV?
A% = 0.06 + 0.03 GeV?
= ~10 times smaller [Nishikawa/Tanaka 2014]
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A% = 2% = 0.31 + 0.15 GeV?
= twist 3 does not contribute
different inputs: LCDAs models depend on 1%, 1% —
we use 142 = 0.03 £+ 0.02 GeV?
A% = 0.06 + 0.03 GeV?
= ~10 times smaller [Nishikawa/Tanaka 2014]

KMPW10: the 3-pt LCDAS twist
three-particle LCDAs twist expansion - expansion was not known

we use Braun/Ji/Manashov 2017



Why such different results? 1/16

KMPW10:
A% = 2% = 0.31 + 0.15 GeV?
= twist 3 does not contribute
different inputs: LCDAs models depend on 1%, 1% —
we use 142 = 0.03 £+ 0.02 GeV?
A% = 0.06 + 0.03 GeV?
= ~10 times smaller [Nishikawa/Tanaka 2014]

KMPW10: the 3-pt LCDAS twist
three-particle LCDAs twist expansion - expansion was not known

we use Braun/Ji/Manashov 2017

KMPW/10: 4 Lorentz structures

independent 3-particle LCDAs considered —y  all8independent Lorentz structures
—partial cancelation (new structures

come with an opposite sign)



Dispersive bound for H)



Dispersive bounds 12/16

obtain #; in the
pr—> phenomenologically
relevant region

parametrize H; truncate the expansion
(z or g2 expansion) estimate truncation error

light-cone OPE g’ =0 interpolate (exp. data) local OPE



Dispersive bounds 12/16

obtain H; in the
pr— phenomenologically
relevant region

parametrize H; truncate the expansion
(z or g2 expansion) estimate truncation error

light-cone OPE q- =0 local OPE

» estimate truncation error using dispersive bounds

« extend method already used for local form factors to non-local form factors H;

. o [BGL 1995] [CLN 1998]
« model independent constraints on H, — control theoretical uncertainties



Parametrizations for H,

q? parametrization [Ciuchini et al. 2015]
2

q /
H,(g?) = H;(0) + W}[’l )
B

dispersion relation [KMPW2010]

f,A
@ =10+ )t
p=1/papces) v\ T 4

z expansion [Bobeth/Chrzaszcz/van Dyk/Virto 2017]
H;(z) = z cpz"

n=0
Wwe propose a new parametrization (z polynomials)
(00}

ﬁl(z) = Z anbn(2)

n=0

13/16



The conformal map

define the z map

Vit —q° =iy
Vi — g% + e

with t, = 4Mj —note that ¢, # t, = (MB + MK(*))Z

z(q*) =

A
—
—6—0— D>
f+ th Rqu
q? plane — z plane
real axis g% > ty, arc of unit circle

14/16



The dispersive bound 15/16

expand #, in orthogonal polynomials p,,(2)

co

j_’Z‘B—>K(Z) — z ag—ﬂ{ pﬁ—ﬂ{(z)

n=0
where

HE=K(2) = P(2) pP~"(2) 377" (2)

now the dispersive bound reads

the coefficients of the ,are bounded!



Summary and conclusions



Summary and conclusions 16/16

calculation of the next-to-leading term in the light-cone OPE V7, using for the first time the full
set B-meson distribution amplitudes in By = {K®), ¢}#* ¢~ and B(s) —» {K*, ¢}y decays

we obtain results two orders of magnitude smaller than KMPW2010

results given in a Mathematica file attached to the arXiv version of the paper

B, — ¢ local FFs using LCSRs with B-LCDAs at g% = {—15,—10,-5, 0,+5} GeV*

first model independent constraints on the non-local FFs 3 ; using dispersive bounds

constrain the coefficients of a new parametrization for €, to interpolate in the physical region
relevant for B decays and to compare with experimental measurements

estimate truncation error — control theoretical uncertainties



Thank you!



Dispersion relation

define the correlator
N0k,0) = i [ d*x (0|7 (0% (), 0,30}
where
0, x j d*x e'* T{je™(x), (C,01 + C,0,)(0)}

use a subtracted dispersion relation

e [ age scle?
t

. (g% —s)?

t, = 4M3 first branch point

calculate y(s) perturbatively and Disc,I1(g#) using unitarity

17/16
A
S
t+ Re q2




OPE calculation of yOFE 18/16

oo )

calculate yOFE using the local OPE for |g?| = m{ (including ag corrections)

S

we obtain at s = —mZ

xOPE(—m2) = (1.81 £ 0.02) - 10™*GeV 2




Hadronic representation of Discll 19/16

starting from the correlator
M(k,q) =i j d*x e™**(0|T{O*(x), 0,(0)}|0)
insert a complete set of states
(k,q) = ijd‘*x e (0|O*|HyHs)(HyHs|0,|0) + -+
using crossing symmetry

(HpH;|0,]0) oc 72,07

for HyHy, = BK™ = B¢

_ ) 12 B B ’
DlSCbSH o wB=K |7‘[B_>K|2 + Z(WAB_)K |‘7'[/—LB_)K | + W/,ls—>¢ ‘}[A s_’¢‘ ) + -
A



Dispersive bound

matching the OPE result onto the hadronic representations of DiscyI1(g?%)

dispersive bound

XOPE (S) >

(00}

(Mp+Mg )?

dq?

w

B—-K |g_[B—>K|2

(g% —s)3

+ first dispersive bound for #5=K, F K" 3779

model independent constraint

strengthen the bound adding additional contributions

20/16



Exploit the dispersive bound 21/16

WB—>K |:7_[B—>K|2

(q% —s)?

)(OPE(S) > j dq2

(Mp+Mg )?

apply the z mapping
+apk
1> j doczz:|}7‘lH<|2
—aBK A

where

HEK (2) = P(2) pP~K(2) HP K (2)

Blaschke factor P(z), outer function ¢pB~%(2)




H, parametrization 22/16

+apK
1> j da 2| FE-K|°
—ABK
expand L, in orthogonal polynomials p,(2)

(00}

R(2)= ) anpa(?)

n=0

now the dispersive bound reads

no bound for the z monomials
(coefficient of the Taylor expansion)



Application of the bound 23/16

estimate the truncation error in the series
1

ﬁB—)K(Z) — z aﬁ—)K pg—ﬂ{(z)

n=0

i.e. the maximal allowed size of HBK

use two theory data points (—5 and —1 GeV?)
use the bound

|H0'i;£effs(q2)/%£;£eﬁs(q2) - 1|

assume Bsy = {K*, ¢} contribute equally
to the bound




Alignment of the gluon with the K®meson ¥

We are interested in the dominant effect of the nonvanishing gluon momenta generated
by the exponent in (3.9). Decomposing the covariant derivative in the light-cone vectors

n_—

n

D = (n:D)—+ (-n._’D)% +D,. (3.10)
we retain only the n_ component, which corresponds to the gluons emitted antiparallel to
q, that is, in the same direction as the s-quark in the B-meson rest frame. We then have

(inyD)

G (ux) ~ exp|—iu(n_x)— )G

= /dw exp[—iu(n_a)w] dfw — M] GoP (3.11)

9

is represented in a compact unintegrated form, and we use the notation ¢ = ¢ — uwn_
so that §° ~ ¢ — 2uwm,;. Here we take into account that w < my, after the hadronic
matrix clement is taken. Note that the neglected components of D in (3.10) produce small,
O(w/my) corrections to ¢, hence our approximation is well justified.

[Khodjamirian et al. "10]



Where is the mistake? 25/16

(014 Gop urInP by, (0)|B(w))
_ fempg
4

. XA YA B
Tr )/5P_|_ (Uayﬁ - vﬁ)/a)(lPA o ‘PV) - laa,BqJV — (yav,[? - yﬁva)m + (yayﬁ - yﬁya)m n (y’ ux)

>K [Kawamura et al. '01]

XA YA
Tr{ysPs [(vayg — vpYe) (Wa — W) — o5 Wy — (Vuvp — y/;va)m + (Va¥p — )%Va)ﬁ] (¥, ux)

(0|d(¥)Gyp (ux)h, (0)|B(v))
_ fempg
4

[Khodjamirian et al. '06]



Ap_extimation

in the exponential model

q

2 _
AB :§Aq
where
_ 1
qumBq—mq+0 —

mgq

estimate the difference to cancel UV-divergent
corrections in fixed-order perturbation theory

2
Zg, = A, + 5 (Bs = Rq) = 0.520 + 0.110 GeV

26/16



3-particle LCDAS twist basis /1o

models given for LCDAs up to twist 4, twist 5 or higher give corrections of the order 1/m,*
[Braun/Ji/Manashov “17]

Y, = %(6133 + d,) Xy = %(_‘D3 + @y — 29,)

¥, =%(—c1>3 + ®,) Y, =%(—<D3 + @y — P, + W)
XA:%(—CD3—¢4+2LP4) W=%(CI>4—‘P4—"¥’4+‘P5+‘T’5+55)
Y, =%(—c1>3 — D, + W, — W) Z =%(—<I>3 + @y — 29, + 2W5 + 5+ D)

use to compute the sum rule
« all 8 independent Lorentz structures (four of them considered for the first time)
 results using LCDAs up to twist 4

e new models for the LCDAS



3-particle LCDAS

KMPW2010

A% _(1)1+(1)2

lPA((‘)lr (1)2) — LIJV((‘)li 0)2) — W&)%e B
ﬂ% __w1+ai
XA = @wz(zwl - a)z)e 1B
A% _(1)1+(1)2
YA = — 24)[4 (1)2(7AB — 13(1)1 + 3(1)2)8 AB
B

A% g definition

(0]d(0)Gap(0)R, (0)|B(w)) = — é feA&Tr|ysTPyogp| — éfB (A — 2D Tr|ysTPy (Vavs — vpva)]

models and A g

Braun/Ji/Manashov
/12 _ Az _(1)1+(1)2
D3 (wq, wy) = %(Dﬂv%e AB
B
A% + A% _W1Hwy
CD4(('U1) (1)2) = E6A4 i (l)%e AB
B
ﬂ% _witwy
Vy(wy, wy) = ﬁwﬂl)ze B
B
A%—[ _(1)1+(1)2
Vy(w, wp) = w1y e B

28/16



Threshold sydetermination 2916

m

1(®) N S0 __S_
feme M2 (K®(k)|0,00,x)|B(q + k) = fBJO dse M? z Ie(s,q*) ¥ (v, ux) (1)

t=3,4

derive with respect to 1/M?
and divide by (1)

S
[°dsse MY, 5, 1,(s,q*) Y (v, ux)

S
fos0 dse M? %, _3,1,(s,q*) ¥ (y, ux)

mK(*) =

daughter sum rule to extract sq



