## Choose timezone

Your profile timezone:

→
Europe/London

Description

To describe black hole thermodynamics in any quantum theory of
gravity, one must introduce constraints that ensure that a black
hole is actually present. I show that for a very large class of
dilaton black holes, the inclusion of such ``horizon constraints''
allows us to use conformal field theory techniques to compute the
density of states, reproducing the correct Bekenstein-Hawking entropy
in a nearly model-independent manner. This picture suggests an
elegant description of the relevant degrees of freedom, as
Goldstone-boson-like excitations arising from symmetry breaking
by a conformal anomaly induced by the horizon constraints.

The agenda of this meeting is empty