BREAD & BUTTER PHYSICS AT MUON COLLIDERS Tao Han

IPPP Topical Meeting on Physics with High-Brightness Stored Muon Beams

- A Higgs factory
- EW physics at high energies
- Precision Higgs physics

Collider benchmark points:

- The Higgs factory: Para
 - $E_{cm} = m_{H}$ $L \sim 1 \text{ fb}^{-1}/\text{yr}$ $\Delta E_{cm} \sim 5 \text{ MeV}$

Parameter	Units	Higgs
CoM Energy	TeV	0.126
Avg. Luminosity	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.008
Beam Energy Spread	%	0.004
Higgs Production $/10^7$ sec		13'500
Circumference	km	0.3

• Multi-TeV colliders: Lumi-scaling scheme: $\sigma L \sim \text{const.}$

$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 \frac{1}{2(10^{35} \text{ cm}^{-2} \text{s}^{-1})} \text{ ab}^{-1} / \text{yr}$$

The aggressive choices: $\sqrt{s} = 3, 6, 10, 14, 30 \text{ and } 100 \text{ TeV}, \mathcal{L} = 1, 4, 10, 20, 90, \text{ and } 1000 \text{ ab}^{-1}$ European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.

1. A HIGGS FACTORY

Resonant Production:

$$\sigma(\mu^+\mu^- \to h \to X) = \frac{4\pi\Gamma_h^2 \operatorname{Br}(h \to \mu^+\mu^-)\operatorname{Br}(h \to X)}{(\hat{s} - m_h^2)^2 + \Gamma_h^2 m_h^2}$$

$$\sigma_{peak}(\mu^+\mu^- \to h) = \frac{4\pi}{m_h^2} BR(h \to \mu^+\mu^-)$$

$$\approx 41 \text{ pb at } m_h = 125 \text{ GeV}.$$

About O(40k) events produced per fb⁻¹

At $m_h = 125$ GeV, $\Gamma_h = 4.2$ MeV

Achievable accuracy at the Higgs factory:

TABLE I. Effective cross sections (in pb) at the resonance $\sqrt{s} = m_h$ for two choices of beam energy resolutions *R* and two leading decay channels, with the SM branching fractions $Br_{b\bar{b}} = 56\%$ and $Br_{WW^*} = 23\%$ [9]. a cone angle cut: $10^\circ < \theta < 170^\circ$

	$\mu^+\mu^- \rightarrow h$		$h \rightarrow b \bar{b}$		$h \rightarrow WW^*$	
R (%)	$\sigma_{ m eff}$ (pb)	$\sigma_{ m Sig}$	$\sigma_{ m Bkg}$	$\sigma_{ m Sig}$	$\sigma_{ m Bkg}$	
0.01	16	76		3.7		
0.003	38	18	15	5.5	0.051	

Good S/B, S/ $\sqrt{B} \rightarrow \%$ accuracies

10

Table 3

Fitting accuracies for one standard deviation of Γ_h , *B* and m_h of the SM Higgs with the scanning scheme for two representative luminosities per step and two benchmark beam energy spread parameters.

$\Gamma_h = 4.07 \text{ MeV}$	L_{step} (fb ⁻¹)	$\delta\Gamma_h$ (MeV)	δΒ	δm_h (MeV)	
R = 0.01%	0.05	0.79	3.0%	0.36	
	0.2	0.39	1.1%	0.18	
<i>R</i> = 0.003%	0.05 0.2	0.30 0.14	2.5% 0.8%	0.14 0.07	
		$\sim 3.5\%$ T	TH, Liu: 1210.7803; Greco, TH, Liu: 1607.03		

2. A MULTI-TEV COLLIDER • EW physics at ultra-high energies: $\frac{v}{E}: \frac{v \ (250 \ \text{GeV})}{10 \ \text{TeV}} \approx \frac{\Lambda_{QCD} \ (300 \ \text{MeV})}{10 \ \text{GeV}}$ $v/E, m_t/E, M_W/E \rightarrow 0!$ A massless theory: → splitting phenomena dominate! • EW symmetry restored:

- \rightarrow SU(2)_L x U(1)_Y unbroken gauge theory
- v/E as power corrections
 → Higher twist effects.

J. Chen, TH, B. Tweedie, arXiv:1611.00788; G. Cuomo, A. Wulzer, arXiv:1703.08562; 1911.12366. Ciafaloni et al., hep-ph/0004071; 0007096; A. Manohar et al., 1803.06347. C. Bauer, Ferland, B. Webber et al., arXiv:1703.08562; 1808.08831.

EW splitting physics: EW PDFs & showering

 $d\sigma_{X,BC} \simeq d\sigma_{X,A} \times d\mathcal{P}_{A \to B+C}$ $E_B \approx z E_A, \quad E_C \approx \bar{z} E_A, \quad k_T \approx z \bar{z} E_A \theta_{BC}$ $\frac{d\mathcal{P}_{A \to B+C}}{dz \, dk_T^2} \simeq \frac{1}{16\pi^2} \frac{z \bar{z} |\mathcal{M}^{(\text{split})}|^2}{(k_T^2 + \bar{z} m_B^2 + z m_C^2 - z \bar{z} m_A^2)^2}$

- On the dimensional ground: $|\mathcal{M}_{split}|^2 \sim k_T^2$ or m^2
- When SU(2) quantum numbers not summed/averaged, factorized formalism may NOT be valid: → Bloch-Nordsieck theorem violation

Ciafaloni et al., hep-ph/0004071; 0007096 C. Bauer, Ferland, B. Webber et al., arXiv:1703.08562; 1808.08831. A. Manohar et al., 1803.06347, J. Chen, TH, B. Tweedie, arXiv:1611.00788.

EW splitting functions: Start from the unbroken phase – all massless. $\mathcal{L}_{SU(2)\times U(1)} = \mathcal{L}_{gauge} + \mathcal{L}_{\phi} + \mathcal{L}_{f} + \mathcal{L}_{Yuk}$ Chiral fermions: f_s , gauge bosons: B, W^0, W^{\pm} ; $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix} = \begin{pmatrix} \phi^+ \\ \frac{1}{\sqrt{2}}(h - i\phi^0) \end{pmatrix}$ e.g.: fermion splitting: 'he scalar part of the Lagrangian is $\mathcal{L}_{\phi} = (D^{\mu}\overline{\phi}) \not \oplus_{\mu} \phi - V(\phi) \quad D_{\mu}\phi = \left(\overleftarrow{\phi_{\mu}} + ig \underbrace{\tau^{i}}_{\mathcal{Q}} W^{i}_{\mu} + \frac{ig'}{2} B_{\mu} \right) \phi,$ $\begin{array}{c|c} f_{s=L,R} & g_V^2(Q_{f_s}^V)^2 & g_1g_2Y_{f_s}T_{f_s}^3 \\ \phi \to \phi' = e^{-i\sum\xi^i L^i}\phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & y_{P_s}^2 \\ \nu + H \end{pmatrix}^R & \nu = \left(-\mu^2/\lambda\right)^{1/2} \\ \begin{array}{c} Infrared & collinear \\ \mathcal{L}_{\phi} = (D^{\mu}\phi)^{\dagger} D_{\mu}\phi - V(\phi) & \end{array} \end{array}$ singularities $\left(P_{\mu\nu} \right)^{2} + \frac{1}{2} \frac{Chirality}{L} + \frac{H}{\nu} \right)^{2} + \frac{1}{2} M_{Z}^{2} Z^{\mu} Z_{\mu} \left(1 + \frac{H}{\nu} \right)^{2}$, Yukawa $(2 H)^2 V(4)$

EW Symmetry breaking & Goldstone-boson Equivalence Theorem (GET): Lee, Quigg, Thacker (1977); Chanowitz & Gailard (1984) At high energies E>>Mw, the longitudinally polarized gauge bosons behave like the corresponding Goldstone bosons. (They remember their origin!)

"Scalarization" to implement the Goldstone-boson Equivalence Theorem (GET):

$$\epsilon(k)_L^{\mu} = \frac{E}{m_W}(\beta_W, \hat{k}) \approx \frac{k^{\mu}}{m_W} + \mathcal{O}(m_W/E)$$

GET violation as power corrections v/E. Like in QCD: higher-twist effects $\Lambda_{\text{QCD}}/\text{E}$.

J. Chen, TH, B. Tweedie, arXiv:1611.00788;G. Cuomo, A. Wulzer, arXiv:1703.08562; 1911.12366.

Splitting in a broken gauge theory: New fermion splitting: $\frac{v^2}{k_T^2} \frac{dk_T^2}{k_T^2} \sim (1 - \frac{v^2}{Q^2})$ V_L is of IR, h no IR

The DPFs for W_L thus don't run at leading log: "Bjorken scaling" restored (higher-twist effects)! • **EW PDFs at a muon collider:** "partons" dynamically generated $\frac{df_i}{d \ln Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P_{i,j}^I \otimes f_j$

 μ^{\pm} : the valance. ℓ_R , ℓ_L , ν_L and $B, W^{\pm,3}$: LO sea. Quarks: NLO; gluons: NNLO. TH, Yang Ma, Keping Xie, arXiv:2007.14300 "Semi-inclusive" processes
 Just like in hadronic collisions:
 μ⁺μ⁻ → exclusive particles + remnants

Underlying sub-processes:

• Jets at low energies For $\mu^+\mu^-$ annihilation: $\sigma_{ann} \sim \frac{\alpha^2}{s}$ For partonic fusion: $\sigma_{fusion} \sim \frac{\alpha^2}{m_{ij}^2} \log^2(\frac{Q^2}{m^2})$

Di-jet production: QCD dominates $\gamma \gamma \rightarrow q\bar{q}, \ \gamma g \rightarrow q\bar{q}, \ \gamma q \rightarrow gq,$ $qq \rightarrow qq(gg), \ gq \rightarrow gq, \ \text{and} \ gg \rightarrow gg(q\bar{q})$

TH, Yang Ma, Keping Xie, to appear soon.

• Unique kinematic features

• Forward tagging:

 $\theta_{\mu} \approx M_Z/E_{\mu}$ $\theta_{\mu} \sim 0.02 \approx 1.2^{\circ} \text{ at 10 TeV.}$ $10^{\circ} < \theta_{\mu^{\pm}} < 170^{\circ}.$ $\Delta R_{b\bar{b}}$

 μ^+

 μ

"Recoil mass" \rightarrow "missing mass": $m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum p_i^{\text{obs}})^2$ $m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - p_{\gamma})^2 > 4m_{\chi}^2$ $m_{\text{missing}}^2 = (p_{\mu^+}^{\text{in}} + p_{\mu^-}^{\text{in}} - p_{\mu^\pm}^{\text{out}})^2 > 4m_{\chi}^2.$ $1/\sigma \cdot d\sigma/dm_{\mathrm{miss}} [1/0.4 \text{ TeV}]$ $(1, 7, \epsilon)$ $\bar{\nu}_{\mu}$ $\gamma \quad \begin{array}{c} (1,7,\epsilon) \\ m_{\chi} = 1 \text{ TeV} \end{array}$ $d\sigma/dm_{
m miss}~[1/0.4{
m Tr}]$ 10^{1} 10^{0} $m_{\chi} = 3 \text{ TeV}$ γ, Z_{Γ} $\frac{b}{10^{-1}}$ karound $10^{-2} \underset{0.0}{\overset{-2}{\scriptstyle -}}$ 12.5 2.55.07.510.0 $m_{\rm missing}$ [TeV]

TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287

3. PRECISION HIGGS PHYSICS

 $\bar{\nu}_{\mu}$

H

H

W

 $\mu^{+}\mu^{-} \rightarrow \nu_{\mu}\bar{\nu}_{\mu} H$ $\mu^{+}\mu^{-} \rightarrow \mu^{+}\mu^{-} H$ WWH / ZZH couplings

HHH/WWHH couplings:

3	6	10	14	30
1	4	10	20	90
490	700	830	950	1200
51	72	89	96	120
0.80	1.8	3.2	4.3	6.7
0.11	0.24	0.43	0.57	0.91
9.5	22	33	42	67
0.012	0.046	0.090	0.14	0.28
2200	3100	3600	4200	5200
57	130	200	260	420
	$\begin{array}{c} 3 \\ 1 \\ 490 \\ 51 \\ 0.80 \\ 0.11 \\ 9.5 \\ 0.012 \\ 2200 \\ 57 \end{array}$	$\begin{array}{c cccc} 3 & 6 \\ 1 & 4 \\ \hline 490 & 700 \\ 51 & 72 \\ 0.80 & 1.8 \\ \hline 0.11 & 0.24 \\ 9.5 & 22 \\ 0.012 & 0.046 \\ \hline 2200 & 3100 \\ 57 & 130 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

10M H

500k HH

TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Achievable accuracies $\mathcal{L} \supset \left(M_W^2 W_{\mu}^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_{\mu} Z^{\mu} \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	(90)	Company n
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050	0.023%	0.1% [41]
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0	1.	16	(68% C.L.)
$ZZH \ (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0_6%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0 41%	0.20%	5% [36]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	: 8	5.5	(68% C.L.)
$HHH (\Delta \kappa_3)$	25%	10%	5.6%	3.9/	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.I

Table 7: Summary table of the expected accuracies at 95% C.L. for the Higgs couplings at a variety of muon collider collider energies and luminosities.

18 TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

Summary

- s-channel Higgs factory:
 - Direct measurements on $Y_{\mu} \& \Gamma_{H}$
 - Other BRs comparable to e⁺e⁻ Higgs factories
- Multi-TeV colliders:
 - Unprecedented accuracies for WWH, WWHH, H³, H⁴
 - Decisive coverage for minimal WIMP DM M ~ $0.5 E_{cm}$ - New particle (H) mass coverage $M_{H} \sim (0.5 - 1)E_{cm}$
 - Further complementarity: Astro/Cosmo/GW etc.
 - Bread & butter SM EW physics in the new territory: EW factorization theorem violation;

Goldstone boson equivalence violation

An exciting journey ahead!

Please join the efforts at: International muon collider collaboration: <u>https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=MUONCOLLIDER-DETECTOR-PHYSICS</u> <u>DETECTOR-PHYSICS</u> Muon Collider Forum: <u>SNOWMASS-MUON-COLLIDER-FORUM@FNAL.GOV</u> at <u>https://snowmass21.org/energy/start#communications</u>.