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Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-
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generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
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to reproduce the near-detector data, there is no guaran-
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for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
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clei via a vector current, while neutrinos have an addi-
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Why Electrons?
- Electrons and Neutrinos have:

- Similar interactions 

- Vector vs. Vector + Axial Vector

- Many identical nuclear effects 

- Ground state (spectral function)

- Final state interactions

Electron beams have known energy

e

e
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           : Playing the Neutrino game 

Analyse electron data as neutrino data

- Select specific final state (exp. 1p0π)

- Scale by 

- Reconstruct incoming lepton energy 

- Benchmark neutrino event generators

e

e

�⌫N/�eN / 1/Q4



Collaboration 

   Modelling development

   Data Analysis 

   Implications on neutrino studies

   Tuning 
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Modelling development
Our efforts are concentrated on            

Latest version v3.0.6 tune G18_10a_02_11a 

Nicely reproducing inclusive results for both neutrino and electrons 
13
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Fig. Extended Data Fig. 4: Comparison of generated (e, e0p)1p0⇡ event distributions for e-GENIE (black) and
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a function of (a) Q2, (b) energy transfer, and (c) P?

miss. The e-GENIE events are weighted by 1/�Mott and the plots
have been area normalized.

arXiv:2009.07228 [nucl-th] Phys. Rev. Lett. 123, 131801 (2019)  
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Electron were weighted by Q4 

1p0π electrons vs. neutrinos

GENIE v3.0.6 tune G18_10a_02_11a  
For more details see backup slides 
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56Fe E = 2.2 GeV 
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Modelling development

In addition:

- Radiative corrections: 
working with Wackeroth 
group from (U Buffalo) 
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First version based on Mo and Tsai

v3.0.6 tune 
G18_10a_02_11a 

In this talk:

- SuSAv2 (G19)

- Rosenbluth QE & Empirical MEC (G2018)
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CLAS Detector

Large acceptance,  Open Trigger

Charged particle detection thresholds:

θe > 15o

Pp > 300 MeV/c 
Pπ+/- > 150 MeV/c
Pπ0 > 500 MeV/c

Targets:   4He, 12C, 56Fe 
Energies: 1.1 , 2.2, 4.4 GeV 



            1p0π Event Selection
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Focus on Quasi Elastic events:
  1 proton above 300 MeV/c  
  no additional hadrons above threshold:
       Pπ+/- > 150 MeV/c

       Pπ0 > 500 MeV/c    

e

e
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Data
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Targets:
   4He, 12C, 56Fe     

Energies around:
   1,2,4 GeV

CLAS6 A(e,e’p) Data 
                 H2O
                 CH 
                 Ar



Subtract for events w/ undetected hadrons 
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Subtract for events w/ undetected hadrons 
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12	

 

Rotate π  around q
!

 to 
determine detection 
acceptance

(e,e’p)


Subtracting undetected 2 proton 
events to get 1proton sample the 

similar way  


Subtracting undetected pions to get 0 pion sample 
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Using two hadron events:

Rotating the two hadrons around q, to determine detection efficiency

Same for final states with more than 2 hadrons

Subtracting  QE like background



Presenting cross section  —New—

18

New estimation for the integrated luminosity for the  CLAS6 runs 

Applying simulation based acceptance correction, radiative corrections 

Systematics: 
- Comparing independent measurement in each sector.

- Varying CLAS acceptance and photon identification cuts

- φqπ independence of the for background subtraction
12	
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Incoming Energy Reconstruction 
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Cherenkov detectors:
Assuming QE interaction
Using lepton only

Tracking detectors:
Calorimetric sum 
Using All detected particles

✏ is the nucleon separation energy ~ 20 MeV

Ecal = El + Ekin
p + ✏EQE =

2M✏+ 2MEl �m2
l

2(M � El + |kl| cos ✓l)
[1p0π]
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Disagreements between Data and MC

 Ee = 1.159 GeV
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Disagreements between Data and MC
1.159 GeV 2.257 GeV 4.453 GeV

12C

56Fe



22

Disagreements between Data and MC
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Disagreements between Data and MC



Multiplicities 
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12CE = 2.257 GeV

v3.0.6 



MINERvA
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Future Plans -Approved run for

Acceptance down to 5o     Q2 > 0.04 GeV2

x10 luminosity  [1035 cm-2s-1]

Keep low thresholds

Targets: 2D, 4He, 12C, 16O, 40Ar, 120Sn 

1 - 7 GeV (relevant for DUNE)

Running planned for 2021

Overwhelming support from: 



         The team

Mariana Khachatryan
ODU @ JLab

Afroditi Papadopoulou
MIT @ FNAL
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         The team
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Contact us: adi@fnal.gov   betan009@fnal.gov   

mailto:adi@fnal.gov
mailto:betan009@fnal.gov
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Summary

- Testing νA Models using wide phase-space 

eA data. 

- Data-MC disagreements for QE-like 

lepton+proton events 

- Especially for high transverse momentum. 

- Large potential impact on DUNE 

- Our data will help improve models 

- More data coming very soon 



Thank you for your attention
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GENIE               v3.0.6   tune   G18_10a_02_11a

GENIE Simulation

electrons neutrinos

Nuclear model Local fermi gas model

QE Rosenbluth CS Nieves model

MEC Empirical model Nieves model

Resonances Berger Sehgal

DIS AGKY

FSI  hA2018

Others Adding radiative correction
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GENIE               v3.0.6   SuSA

GENIE Simulation

electrons neutrinos

Nuclear model Local fermi gas model

QE Rosenbluth CS Nieves model

MEC SuSAv2 SuSAv2

Resonances Berger Sehgal

DIS AGKY

FSI  hA2018

Others Adding radiative correction
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Testing the incoming energy reconstruction
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Erec Worse with Higher Mass
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Erec Worse with Higher Energy
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Systematic Uncertainties - Data side 
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1. Background subtraction: 
1. Assuming no φqπ dependency when rotation hadrons system 

around q vector. H(e, e’pπ) cross sections measured dependency 
affected the subtracted spectra by about 1%. 

2. Varying the CLAS π acceptance in each sector reduced by10–
20%. This changed the resulting subtracted spectra by about 1% at 
1.159 and 2.257 GeV and by 4% at 4.453 GeV. 

2. Varying the photon identification cuts using its velocity greater than 
two standard deviations (3σ at 1.159 GeV) below v = c, by ±0.25σ. 
This gave an uncertainty in the resulting subtracted spectra of 0.1%, 
0.5% and 2% at 1.159, 2.257 and 4.453 GeV. 

3. Ratio of data to GENIE in the 6 sectors excluding dead regions. leads 
to 6% uncertainty.
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12C(e,e’)    E = 0.961 GeV        = 37.5˚✓

            El-El’ [GeV]                

Testing neutrino generators 
with inclusive electron scattering data
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PT = P e0

T + P p
T

v3.0.6 



MC vs. (e,e’p) Data: 
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PT = P e0

T + P p
T

v3.0.6 
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Where did the MEC in G2018 go?
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CLAS6: 15o  < θe < 45o 



Potential implication on            analysis

40

- νe appearance channel (all inclusive)
- Using existing parameter constraints 

from reactors + others experiments 
- Smearing energy based on events 

with:
   1e1p selection 
   θe > 15o

   Pp > 300 MeV/c 
   No Pπ+/- > 150 MeV/c

2

Fig. 1: Neutrino oscillations and energy spectra measurements | (Left) Neutrino energy spectra
reconstruction depends on our ability to model the interaction of neutrinos with atomic nuclei and the propagation
of particles through the atomic nucleus. This flow chart shows the process, starting with the oscillated far-detector

⌫e incident-energy spectrum (green), di↵erentiating the physical neutrino interactions (green arrows) from the
experimental analysis (blue arrows), and ending up with the inferred incident-energy spectrum (blue). The blue

curve is obtained from simulating the neutrino-nucleus interactions with the CLAS data-derived smearing matrices
and reconstructing the flux using the model-derived smearing matrices instead. The input incident-energy spectrum

is shown for reference as the thin green.

f�i(E,Erec) is a smearing matrix relating the real (E)
and reconstructed (Erec) neutrino energies. Erec di↵ers
from E due to both experimental e↵ects (e.g. detector
resolutions, ine�ciencies, backgrounds) and nuclear in-
teraction e↵ects (e.g. nucleon motion, meson currents,
nucleon reinteraction). While experimental e↵ects are
generally understood and can be minimized using im-
proved detectors, nuclear e↵ects are irreducible and must
be accounted for using theoretical models, typically im-
plemented in neutrino event generators.

The precision to which oscillation parameters can be
determined experimentally therefore depends on our abil-
ity to extract �↵(E,L) fromN↵(Erec, L), see Fig. 1. This
is largely determined by the accuracy of the theoretical
models used to calculate �i(E) and f�i(E,Erec). Cur-
rent oscillation experiments report significant systematic
uncertainties due to these interaction models [7–10] and
simulations show that energy reconstruction errors can
lead to significant biases in extracting �CP at DUNE [11].
There is a robust theoretical e↵ort to improve these mod-
els [12–14].

Because there are no mono-energetic high-energy neu-
trino beams, these models cannot be tested for individual
neutrino energies. Instead, experiments tune models of

�i(E) and f�i(E,Erec) to reproduce their near-detector
data, where the unoscillated flux �(E, 0) is relatively well
known from hadronic calculations [15–17].

While highly informative, such integrated constraints
are insu�cient to ensure that the models are correct for
each value of E. Therefore, even if the models are tuned
to reproduce the near-detector data, there is no guaran-
tee that they are suitable for analyzing far-detector data,
where the neutrino flux can be very di↵erent due to os-
cillations.

Here we report the first measurement of f�i(E,Erec)
for mono-energetic electron-nucleus scattering, and use
it to test interaction models used by neutrino oscilla-
tion analyses. Both types of leptons, e and ⌫, interact
similarly with nuclei. Both particles interact with nu-
clei via a vector current, while neutrinos have an addi-
tional axial-vector current. The nuclear ground state is
the same in both cases and many of the nuclear reac-
tion e↵ects are similar. See Methods for details. There-
fore, any model of neutrino interactions (vector+axial-
vector) should also be able to reproduce electron (vec-
tor) interactions. The data presented here can therefore
test and constrain neutrino-nucleus interaction models
to be used in analysis of neutrino oscillation measure-

Reconstructed based on simulation
Reconstructed based on smearing in 
electron scattering data


