Queen Mary University of London **Cross-section measurements in** the NOVA Near Detector Dr Linda Cremonesi

IPPP topical meeting on physics with high-brightness stored muon beams 10-11 February 2021

The NOvA experiment

- NOvA is a long-baseline neutrino experiment:
 - 2 detectors, 14 mrad off-axis, 809 km apart.
 - Designed to measure for $v_{\mu} \rightarrow v_{e}$ oscillations: detectors provide excellent imaging of both v_{μ} and v_e CC events.
- NOvA can run in neutrino-mode or antineutrino-mode.

L. Cremonesi

The NOvA experiment

- NOvA is a long-baseline neutrino experiment:
 - 2 detectors, 14 mrad off-axis, 809 km apart.
 - Designed to measure for $v_{\mu} \rightarrow v_{e}$ oscillations: detectors provide excellent imaging of both v_{μ} and v_e CC events.
- NOvA can run in neutrino-mode or antineutrino-mode.

_. Cremonesi

- High neutrino flux at Near Detector:
 - used as control for the oscillation analyses,
 - provides a rich data set for measuring cross sections.
- ND located 1km from the NuMI beam target.
- 96% pure v_{μ} beam, 1% v_{e} and \overline{v}_{e}

NOvA Near Detector

Alternating planes allow for 3D reconstruction

Wavelength shifting fibres read out by a single pixel on Avalanche Photodiode

. Cremonesi

3.9 cm 6.0 cm

- 300t tracking calorimeter
- Extruded plastic cells, filled with liquid scintillator
- 0.17 X₀ per layer
- 77% hydrocarbon, 16% chlorine, 6% TiO₂ by mass
- Muon catcher (steel + NOvA cells) at downstream end to range out ~2GeV muons.

Neutrino CC interactions at NOvA

 NOvA flux peaks between 1 and 5 GeV: it sits in the transition region between different neutrino interaction processes.

L. Cremonesi

Neutrino CC interactions at NOvA

 NOvA flux peaks between 1 and 5 GeV: it sits in the transition region between different neutrino interaction processes.

L. Cremonesi

Neutrino CC interactions at NOvA

• These neutrino interactions happen inside the nuclear media.

L. Cremonesi

NOvA simulation

L. Cremonesi

NOvA simulation

L. Cremonesi

Hadron production model constrained with external measurements on thin target.

Resulting uncertainty ~10% in normalisation.

Technique by MINERvA [Phys.Rev.D94, 092005]

"Cross-section measurements in the NOvA ND"

Flux(v/ m² /GeV / 10⁶POT)

Ratio

L. Cremonesi

Efficiency

- and **purity** which are estimated from our simulation.
- 2.12.2):
- Same tune that was used in the NOvA 2018 analysis Eur. Phys. J. C 80, 1119 (2020)

. Cremonesi

Neutrino cross-section measurements at NOvA

Energy range

Detector technology

Statistics

Unique environment for cross section measurements

. Cremonesi

Neutrino cross-section measurements at NOvA

This talk

Energy range

Detector technology

Statistics

Unique environment for cross section measurements

. Cremonesi

			_
			_
			-
			-
	-		
		_	
			-

V, CC Incusive

More than 1M v_{μ} CC events in our selection

			_
			_
			-
			-
	-		_
		_	
			-

Particle ID

L. Cremonesi

- Preselection: events fully contained and with vertex in fiducial volume.
- Muon ID calculated with a Boosted Decision Tree.

Particle ID

... Cremonesi

- Preselection: events \bullet fully contained and with vertex in fiducial volume.
- Muon ID calculated with a Boosted Decision Tree.
- Cut value ${\color{black}\bullet}$ corresponds to minimum uncertainties on cross section measurement.
- Resulting sample \bullet has 86% purity and ~90% efficiency with respect to preselection.

$\left(\frac{d^{2}\sigma}{d\cos\theta_{\mu}dT_{\mu}}\right)_{i} = \sum_{k} \left(\frac{\sum_{j} U_{ijk}^{-1} (N^{\text{sel}}(\cos\theta_{\mu}, T_{\mu}, E_{\text{avail}})_{j} P(\cos\theta_{\mu}, T_{\mu}, E_{\text{avail}})_{j})}{N_{\text{t}}\Phi\epsilon(\cos\theta_{\mu}, T_{\mu}, E_{\text{avail}})_{ik}\Delta\cos\theta_{\mu_{i}}\Delta T_{\mu_{i}}}\right)$

• Flux-averaged double differential cross section in 172 bins (white outline).

L. Cremonesi

$\left(\frac{d^{2}\sigma}{d\cos\theta_{\mu}dT_{\mu}}\right)_{i} = \sum_{k} \left(\frac{\sum_{j} U_{ijk}^{-1} (N^{\text{sel}}(\cos\theta_{\mu}, T_{\mu}, \boldsymbol{E}_{\text{avail}})_{j} P(\cos\theta_{\mu}, T_{\mu}, \boldsymbol{E}_{\text{avail}})_{j})}{N_{\text{t}}\Phi\epsilon(\cos\theta_{\mu}, T_{\mu}, \boldsymbol{E}_{\text{avail}})_{ik}\Delta\cos\theta_{\mu_{i}}\Delta T_{\mu_{i}}}\right)$

- Flux-averaged double differential cross section in 172 bins (white outline).
- Selection purity and efficiency corrections applied in 3D space (T_{μ} , $\cos\theta_{\mu}$, E_{avail}).
- E_{avail} (available energy): total energy of all observable final state hadrons.
- This reduces potential model dependence of the efficiency and purity corrections on the final-state hadronic system.
- Unfolded 3D result is then integrated over Eavail.

L. Cremonesi

NOvA Simulation u (GeV) Reconstructed 1.5 0.5 0.6 0.8 0.9 0.7 Reconstructed Cos0,

Fractional Uncertainties

Weighted average uncertainties to extracted cross section value.

- Flux is a normalisation uncertainty ~9%.
- Statistical uncertainties at level of a few %.
- Interaction modeling uncertainties are subdominant.
- Measurements has typical total uncertainties around 12% in each bin.

... Cremonesi

NOvA Preliminary

University of London

University of London

Example 4 cosine slices

v_{μ} CC inclusive

- Good agreement between tuned/untuned GENIE versions in high angle slices.
- At forward angle, where QE and MEC events dominate, the untuned GENIE 2 overshoots data.

University of London

Example 4 cosine slices

v_{μ} CC inclusive

- Out of the box generator comparisons.
- All generators reproduce well the shape of our data.
- We notice an overall normalisation difference in GiBUU.

*N18_10j_02_11a: combination of G18_10j_00_000 and G18_10b_02_11a, ection measurements in the N \rightarrow VA_ND^a,

University of London

Example 4 cosine slices

$v_{\mu} \ CC \ inclusive$

We used the total covariance matrix to calculate p-values.

Generator	p-value
GENIE 2.12.2 - Tuned	0.93
GENIE 2.12.2 - Untuned	0.24
GENIE 3.00.06*	0.26
GiBUU 2019	0.03
NEUT 5.4.0	0.52
NuWro 2019	0.22

*N18_10j_02_11a: combination of G18_10j_00_000 and G18_10b_02_11a, ection measurements in the N \rightarrow VA_N $^{-1}$

		Ċ
		-
		-
		_
		-
		Η
		_
		-
		-
		_
		-
		-
		-
		-
, <u> </u>		
		_
		-
		j
		-

		Ċ
		-
		-
		_
		-
		Η
		_
		-
		-
		_
		-
		-
		-
		-
, <u> </u>		
		_
		-
		j
		-

Analysis strategy

- High efficiency low purity selection and background constrained with template fit on ElectronID
- Boosted Decision tree based on several inputs to distinguish electrons from other particles:
 - Deep convolution network PIDs based on single particle (CVN).
 - Event level information.

L. Cremonesi

 $Prongs/8.09 \times 10^{20} POT$

Analysis strategy

- High efficiency low purity selection and background constrained with template fit on ElectronID
- **Boosted Decision tree based** on several inputs to distinguish electrons from other particles:
 - Deep convolution network PIDs based on single particle (CVN).
 - Event level information.
- ElectronID not as strongly discriminating as MuonID.

. Cremonesi

× 10²⁰ POT

Prongs/8.09

150

First v_e CC double differential measurement $\left(\frac{d^2\sigma}{d\cos\theta_e dE_e}\right)_i = \sum_i \left(\frac{U_{ij}^{-1}(N^{\rm sel}(\cos\theta_e, E_e)_j - N^{\rm bkg}(\cos\theta_e, E_e)_j)}{N_{\rm t}\Phi\epsilon(\cos\theta_e, E_e)_{ik}\Delta\cos\theta_{e_i}\Delta E_{e_i}}\right)$

 Flux-averaged double differential cross section as a function of the electron kinematics.

. Cremonesi

$\left(\frac{d^2\sigma}{d\cos\theta_e dE_e}\right)_i = \sum_i \left(\frac{U_{ij}^{-1}(N^{\rm sel}(\cos\theta_e, E_e)_j - N^{\rm bkg}(\cos\theta_e, E_e)_j)}{N_{\rm t}\Phi\epsilon(\cos\theta_e, E_e)_{ik}\Delta\cos\theta_{e_i}\Delta E_{e_i}}\right)$

- Flux-averaged double differential cross section as a function of the electron kinematics.

. Cremonesi

- Flux-averaged double differential cross section as a function of the electron kinematics.
- Uncertainties in templates shape are accounted for using a covariance matrix.

. Cremonesi

Fractional Uncertainties

- Average uncertainty is a weighted average to extracted cross section value.
- *Uncertainty output of the template fit.
- Main uncertainties are related to calibration and detector response as Electron energy is calculated from calorimetry.
- Interaction modeling uncertainties play a substantial role as analysis has a large fraction of background.
- Measurements have typical total uncertainties between 15% and 20% in each bin.

_. Cremonesi

NOvA Preliminar

	У
1	

University of London

v_e CC inclusive

Data (Stat. + Syst.)
GENIE 2.12.2 - NOvA Tune
GENIE 2.12.2 - Untuned

 Good agreement between tuned/untuned GENIE versions in all angle slices.

University of London

v_e CC inclusive

Data (Stat. + Syst.)
GENIE 3.00.06*
GiBUU 2019
NEUT 5.4.0
NuWro 2019

- Out of the box generator comparison.
- Measurement in good agreement with generator predictions.
- p-values ranging from 0.3 to 0.99.

*N18_10j_02_11a: combination of G18_10j_00_000 and G18_10b_02_11a, section measurements in the NOVA-ND"

Summary

v_{μ} CC inclusive

- More than 1M events.
- 172 bins in muon kinematics.
- Uncertainties ~12% in each bin.

L. Cremonesi

v_e CC inclusive

- First double differential measurement.
- Around 10k events.
- Uncertainties ~ 15-20% in each bin.

Summary

v_{μ} CC inclusive

- More than 1M events.
- 172 bins in muon kinematics.
- Uncertainties ~12% in each bin.
- Active programme includes: lacksquare
 - Ratio of v_e to v_μ cross sections. •

 - Data-driven techniques to reduce uncertainties.

. Cremonesi

Total covariance matrices and p-value calculations will be made available to the community.

Antineutrino version of these analyses and neutrino version of exclusive channels.

L. Cremonesi

Thank you!

MAY 2020

L. Cremonesi

2018 NOvA tune

- We use NOvA and external data to tune interaction model
- Correct quasielastic (QE) component to account for low Q² suppression using model of Valencia group via work of R. Gran (MINERvA) [https://arxiv.org/abs/1705.02932]
- Apply low Q² suppression to resonant (RES) baryon production.
- Nonresonant inelastic scattering (DIS) at high invariant mass $(W>1.7 \text{ GeV/c}^2)$ weighted up 10% based on NOvA data.
- "Empirical MEC" based on NOvA ND data to account for multinucleon knockout (2p2h). Tuning is done in bins of momentum transfer using the visible hadronic energy distribution.

. Cremonesi

NuMu CC inclusive Covariance matrix

Muon Kinematic Total Covariance Matrix

_. Cremonesi

× 10⁻⁷⁸

- We use a covariance matrix to calculate our final systematic uncertainties
- We generate 100k+ universes corresponding to different combinations of our systematic uncertainty samples to populate a covariance matrix
- One of the key deliverable of the analysis as it will allow users to access full treatment of our systematics

Comparison to generators

- We generate 100k+ universes corresponding to different combinations of our systematic uncertainty samples to populate a covariance matrix, which accounts for bin to bin correlations.
- We use this covariance matrix to calculate 50,000 throws from each generator prediction (RooFit).
- Compare test statistics of throws to data to find p-values. **NOvA** Preliminary

Generator	p-valu
GENIE 2.12.2 - Tuned	0.93
GENIE 2.12.2 - Untuned	0.24
GENIE 3.00.06 - Untuned	0.26
GiBUU 2019	0.03
NEUT 5.4.0	0.52
NuWro 2019	0.22

NOvA Preliminary

Shape-only p-values

 Shape-only p-values are calculated using data-normalised generator predictions and shape-only covariance matrices.

v_{μ} CC inclusive

Generator	p-value	
GENIE 2.12.2 - Tuned	0.54	
GENIE 2.12.2 - Untuned	0.003	
GENIE 3.00.06 - Untuned	0.31	
GiBUU 2019	0.38	
NEUT 5.4.0	0.004	
NuWro 2019	0.54	

L. Cremonesi

v_e CC inclusive

Generator	p-value
GENIE 2.12.2 - Tuned	0.95
GENIE 2.12.2 - Untuned	0.60
GENIE 3.00.06 - Untuned	0.95
GiBUU 2019	0.72
NEUT 5.4.0	0.40
NuWro 2019	0.78

NuMu CC Inclusive - single differential cross sections

Single differential derived variables (Enu and Q2) extracted only over the ranges of muon kinematics reported in the differential measurements

NuE CC Inclusive - single differential cross sections

Single differential derived variables (Enu and Q2) extracted only over the ranges of electron kinematics reported in the differential measurements

University of London

L. Cremonesi

L. Cremonesi