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NuSTORM and muon collider

 nuSTORM facility aims to
 Measure neutrino scattering cross sections
 Search for sterile neutrinos and other BSM physics
 Provide a technology test-bed for the muon collider

 What is the nuSTORM muon facility?
 Why – and how - is it related to muon collider?
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nuSTORM facility

 What is the nuSTORM facility?

 Main features
 ~250 kW target station
 Pion transport line
 Stochastic muon capture into storage ring
 Option for conventional FODO ring or high aperture FFA ring

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020

Pion beam dump/muon test area
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Target Station

 Baseline is for a conventional target horn arrangement
 Talk by Ilias

J. Alabau-Gonsalvo et al, Laguna-lbno design study
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Pion Transport Line

OCS = Orbit Combination Section

A. Liu et al, Design and Simulation of the nuSTORM Pion Beamline, NIM A, 2015
D. Adey et al, Overview of the Neutrinos from Stored Muons Facility – nuSTORM, JINST, 2017

 Pion transport line
 Proton beam dump
 Momentum selection
 Active handling
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Stochastic Muon Capture

 Pions injected into the decay ring
 Capture muons that decay backwards in pion CoM frame
 Undecayed pions and forwards muons diverted into muon test area

 Extraction line at end of first decay straight

Pions at horn Muons in 
decay straight

OCS 
π acceptance

Storage ring
μ acceptance
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Storage Ring

 Storage ring
 Either conventional FoDo ring
 Or high acceptance FFA ring
 (Talk by Jaroslaw)

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020
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Muon Collider

 Why – and how - is nuSTORM related to muon collider?
 Muon beam physics highlighted as high priority initiative by 

European strategy update
 ~10 TeV Muon Collider has physics reach comparable to FCC-hh
 Footprint is considerably smaller

 CERN-led Muon Collider Collaboration formed in June
 Some discussion of making a “demonstrator”

 Demonstrate some of the beam physics concepts
 Address some of the technical issues
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Muon Collider Facility

 Proton based Muon Collider (MC) facility
 Protons on target → pions, muons et al.
 Transverse and longitudinal capture
 Transverse and longitudinal cooling
 Acceleration
 Collider ring
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Muon Collider Facility

Parameter Unit 3 TeV 10 TeV 14 TeV

L 1034 cm-2s-1 1.8 20 40

N 1012 2.2 1.8 1.8

fr Hz 5 5 5

Pbeam MW 5.3 14.4 20

C km 4.5 10 14

<B> T 7 10.5 10.5

εL MeV m 7.5 7.5 7.5

σE / E % 0.1 0.1 0.1

σz mm 5 1.5 1.07

β mm 5 1.5 1.07

ε μmm 25 25 25

σx,y μmm 3.0 0.9 0.63
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MC Target

X. Ding et al, Carbon and Mercury target system for muon colliders and neutrino factories, IPAC16



  12

MC Accelerator/Collider Ring

 RCS concept
 Hybrid superconducting/normal conducting RCS

 FFA concept
 Fixed field accelerator
 Use vertical orbit excursion

 Constant path length at different energy
 “Relativistic cyclotron”



  

Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS completely cancels the 

cooling

Ionisation Cooling

MUONSRF
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Muon Cooling

Phase rotation

6D cooling

4D Final 
cooling
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Buncher/Phase Rotator

 Drift to develop energy-time relation 
 Buncher adiabatically ramp RF voltages
 Phase rotator misphase RF

 High energy bunches decelerated
 Low energy bunches accelerated

 Many RF frequencies required
 Bunch separation changes along the 

length of the front end
 Nb: plots to right were made without 

chicane
 This would remove the high p muons

 Uniform solenoid field
 Transport very high emittance muon 

beam

time
m

om
en

tu
m



  

Rectilinear Cooling

 6D Cooling
 Combined function dipole-solenoid magnets
 Compact lattice – RF integrated into magnet cryostat
 Lithium Hydride or lH2 absorbers
 Careful field shaping to control position of stop-bands

Beam

D. Stratakis and R. Palmer, Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical 
study, Phys. Rev. ST Accel. Beams 18, 2015
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Final cooling

 Challenge is to get very tight focussing
 Go to high fields (~30 T) and lower momenta

 Causes longitudinal emittance growth
 Chromatic aberrations introduce challenges

 Elaborate phase rotation required to keep energy spread small
 Move to low RF frequency to manage time spread

H. Sayed et al., High field – low energy muon ionization cooling channel, Phys. Rev. ST Accel. Beams 18, 2015
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MICE

 Muon ionisation cooling has been 
demonstrated by MICE

 Muons @ ~140 MeV/c
 Transverse cooling only
 No re-acceleration
 No intensity effects



  19

Muon Cooling Issues

 Longitudinal cooling has not yet been demonstrated
 Cooling in regime of tight focussing/low emittances has not 

been demonstrated
 Integration of very high field solenoids with RF and beam may 

be challenging
 “Conventional” intensity effects
 Novel intensity effects

 Absorber heating
 Plasma loading of cavities

 Day-to day operation
 ...
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Cooling - Beam Tests

 Single-pass (linac) prototype
 Measurement of cooling challenging

 Ring prototype
 Multi-turns → bigger cooling signal
 May be more expensive

 Muons
 Difficult to get to high intensities

 Protons
 High intensities available
 Energy loss regime is quite different → thin absorbers
 Nuclear effects may also contribute

 Don’t consider electrons
 e- energy loss is primarily through Bremsstrahlung

 Phased approach may be productive
 Build a ring segment for protons; add more segments for muons
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Solenoid Cooling Ring (Protons)

Number of Cells 12 Foil thickness 10 micron
Radius 3 m Foil material Be
Energy range 6-15 MeV Voltage/turn 250 kV
Solenoid field 1.6 T RF phase 11 degrees
Dipole field 0.68 T RF freq 2.452 MHz
Magnet Length 500 mm
Bore Radius 400 mm

Foil

Solenoid+
Dipole

RF
Cavity
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Solenoid Cooling Ring (Muons)

Number of Cells 12 Abs thickness 28 cm
Radius 5 m Abs material liquid H2
Energy 250 MeV Voltage/turn ~120 MV
Solenoid field 2.8 T RF phase 25 degrees
Dipole field 0.15 T RF freq 201 MHz

Absorber

Solenoid+
Dipole

RF
Cavity

R, Palmer et al, Phys. Rev. ST Accel. Beams 8, 061003 (2005)
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Survey of Muon Beamlines
MC Front End Baseline Muon Collider Rings

LEMMA

CERN M2

COMET II nuSTORM 
target and ring

nuSTORM
muon test area
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Cooling - Questions

 Cooling considerations
 Benefits of high intensity muons

 Can we design an “affordable” lattice with strong enough cooling signal 
that conventional diagnostics are convincing

 Or do we need to do single particle experiment like MICE
 Is it easy to get a high intensity source of protons at nuSTORM?

 Can we interleave proton/muon tests?
 Excite collective effects with protons and test with muons?
 Pump probe

 What proton momentum is desired for physics tests?
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LDG and PPTAP Panels

 (European) LDG Process
 Lab Directors’ Group called panels to coordinate R&D based on 

European Strategy
 Muon LDG panel led by D. Schulte

 (European) ECFA Process
 Support detector R&D

 (UK) PPTAP Process
 Produce UK position on R&D Roadmaps for European Strategy
 Seek to establish UK priorities

 Where is there expertise? Where are there gaps? How does it tie in to 
other UK priorities (e.g. non-HEP)

 Rogers – contact for muon beam physics
 Palladino – contact for Gas/Liquid detectors
 https://stfc.ukri.org/about-us/how-we-are-governed/advisory-boards/pptap/

 (UK) PPAP process
 Set overall UK physics priorities

https://stfc.ukri.org/about-us/how-we-are-governed/advisory-boards/pptap/
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Summary

 NuSTORM can be a stepping stone on the way to a muon 
collider

 A number of issues that will be faced by muon collider can be 
addressed at nuSTORM

 In particular, nuSTORM would provide the highest rate high 
energy muon beam line
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