NuSTORM, Muon Cooling and its Demonstration

Science & Technology Facilities Council ISIS Neutron and Muon Source

C. T. Rogers

NuSTORM and muon collider

- nuSTORM facility aims to
 - Measure neutrino scattering cross sections
 - Search for sterile neutrinos and other BSM physics
 - Provide a technology test-bed for the muon collider
- What is the nuSTORM muon facility?
- Why and how is it related to muon collider?

nuSTORM facility

What is the nuSTORM facility?

nuSTORM at CERN – Feasibility Study, Ahdida et al, CERN-PBC-REPORT-2019-003, 2020

Main features

- ~250 kW target station
- Pion transport line
- Stochastic muon capture into storage ring
- Option for conventional FODO ring or high aperture FFA ring

Target Station

J. Alabau-Gonsalvo et al, Laguna-lbno design study

- Baseline is for a conventional target horn arrangement
 - Talk by Ilias

Pion Transport Line

A. Liu et al, Design and Simulation of the nuSTORM Pion Beamline, NIM A, 2015 D. Adey et al, Overview of the Neutrinos from Stored Muons Facility – nuSTORM, JINST, 2017

- Pion transport line
 - Proton beam dump
 - Momentum selection
 - Active handling

Stochastic Muon Capture

- Pions injected into the decay ring
- Capture muons that decay backwards in pion CoM frame
- Undecayed pions and forwards muons diverted into muon test area
 - Extraction line at end of first decay straight

Storage Ring

- Storage ring
 - Either conventional FoDo ring
 - Or high acceptance FFA ring
 - (Talk by Jaroslaw)

Muon Collider

- Why and how is nuSTORM related to muon collider?
- Muon beam physics highlighted as high priority initiative by European strategy update
 - ~10 TeV Muon Collider has **physics reach comparable to FCC-hh**
 - Footprint is considerably smaller
- CERN-led Muon Collider Collaboration formed in June
- Some discussion of making a "demonstrator"
 - Demonstrate some of the beam physics concepts
 - Address some of the technical issues

Muon Collider Facility

- Proton based Muon Collider (MC) facility
 - Protons on target \rightarrow pions, muons et al.
 - Transverse and longitudinal capture
 - Transverse and longitudinal cooling
 - Acceleration
 - Collider ring

Muon Collider Facility

Parameter	Unit	3 TeV	10 TeV	14 TeV
L	10 ³⁴ cm ⁻² s ⁻¹	1.8	20	40
N	10 ¹²	2.2	1.8	1.8
f,	Hz	5	5	5
P _{beam}	MW	5.3	14.4	20
С	km	4.5	10	14
	Т	7	10.5	10.5
ε _L	MeV m	7.5	7.5	7.5
σ _E / Ε	%	0.1	0.1	0.1
σ _z	mm	5	1.5	1.07
β	mm	5	1.5	1.07
3	μm	25	25	25
σ _{x,y}	μm	3.0	0.9	0.63

MC Target

MC Accelerator/Collider Ring

- RCS concept
 - Hybrid superconducting/normal conducting RCS
- FFA concept
 - Fixed field accelerator
 - Use vertical orbit excursion
 - Constant path length at different energy
 - "Relativistic cyclotron"

Ionisation Cooling

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

Muon Cooling

Buncher/Phase Rotator

- Drift to develop energy-time relation
- Buncher adiabatically ramp RF voltages
- Phase rotator misphase RF
 - High energy bunches decelerated
 - Low energy bunches accelerated
- Many RF frequencies required
 - Bunch separation changes along the length of the front end
- Nb: plots to right were made without chicane
 - This would remove the high p muons
- Uniform solenoid field
 - Transport very high emittance muon beam

Science & Technology Facilities Council

SIS Neutron and Muon Source

Rectilinear Cooling

D. Stratakis and R. Palmer, Rectilinear six-dimensional ionization cooling channel for a muon collider: A theoretical and numerical study, Phys. Rev. ST Accel. Beams 18, 2015

6D Cooling

- Combined function dipole-solenoid magnets
- Compact lattice RF integrated into magnet cryostat
- Lithium Hydride or IH2 absorbers
- Careful field shaping to control position of stop-bands

Final cooling

H. Sayed et al., High field – low energy muon ionization cooling channel, Phys. Rev. ST Accel. Beams 18, 2015

- Challenge is to get very tight focussing
- Go to high fields (~30 T) and lower momenta
 - Causes longitudinal emittance growth
 - Chromatic aberrations introduce challenges
 - Elaborate phase rotation required to keep energy spread small
 - Move to low RF frequency to manage time spread

- Muon ionisation cooling has been demonstrated by MICE
 - Muons @ ~140 MeV/c
 - Transverse cooling only
 - No re-acceleration
 - No intensity effects

nature

Explore our content 🗸 🛛 Journal information 🗸

nature > articles > article

Article | Open Access | Published: 05 February 2020

Demonstration of cooling by the Muon Ionization Cooling Experiment

MICE collaboration

Muon Cooling Issues

- Longitudinal cooling has not yet been demonstrated
- Cooling in regime of tight focussing/low emittances has not been demonstrated
- Integration of very high field solenoids with RF and beam may be challenging
- "Conventional" intensity effects
- Novel intensity effects
 - Absorber heating
 - Plasma loading of cavities
- Day-to day operation

Cooling - Beam Tests

- Single-pass (linac) prototype
 - Measurement of cooling challenging
- Ring prototype
 - Multi-turns → bigger cooling signal
 - May be more expensive
- Muons
 - Difficult to get to high intensities
- Protons
 - High intensities available
 - Energy loss regime is quite different → thin absorbers
 - Nuclear effects may also contribute
- Don't consider electrons
 - e⁻ energy loss is primarily through Bremsstrahlung
- Phased approach may be productive
 - Build a ring segment for protons; add more segments for muons

Solenoid Cooling Ring (Protons)

Solenoid Cooling Ring (Muons)

Survey of Muon Beamlines

Cooling - Questions

- Cooling considerations
 - Benefits of high intensity muons
 - Can we design an "affordable" lattice with strong enough cooling signal that conventional diagnostics are convincing
 - Or do we need to do single particle experiment like MICE
 - Is it easy to get a high intensity source of protons at nuSTORM?
 - Can we interleave proton/muon tests?
 - Excite collective effects with protons and test with muons?
 - Pump probe
 - What proton momentum is desired for physics tests?

LDG and PPTAP Panels

- (European) LDG Process
 - Lab Directors' Group called panels to coordinate R&D based on European Strategy
 - Muon LDG panel led by D. Schulte
- (European) ECFA Process
 - Support detector R&D
- (UK) PPTAP Process
 - Produce UK position on R&D Roadmaps for European Strategy
 - Seek to establish UK priorities
 - Where is there expertise? Where are there gaps? How does it tie in to other UK priorities (e.g. non-HEP)
 - Rogers contact for muon beam physics
 - Palladino contact for Gas/Liquid detectors
 - https://stfc.ukri.org/about-us/how-we-are-governed/advisory-boards/pptap/
- (UK) PPAP process
 - Set overall UK physics priorities

Summary

- NuSTORM can be a stepping stone on the way to a muon collider
- A number of issues that will be faced by muon collider can be addressed at nuSTORM
- In particular, nuSTORM would provide the highest rate high energy muon beam line

