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FFA —Fixed Field Alternating gradient
accelerators

* Invented independently by A. Kolomensky, T. Okhava and K. Symon in
50ties

* They enjoyed rapid developments at the time and almost vanished
afterwards

* They came back in 2000 with the first proton FFA developed at KEK by
Y. Mori’s group
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FFA and their properties
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Advantages of FFAs for muon accelerators:
* Lack of ramping

* Large intrinsic momentum acceptance
* Typically large transverse acceptance

EMMA in DL



Machine
Magnetic field
RF frequency
Orbit

Tune

FFA vs other circular machines

Cyclotron
constant
constant

changing

changing

Synchrotron
changing
changing

constant

constant
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 NnuSTORM ("NeUtrinos from STORed Muons') is a facility
based on a low-energy muon decay ring.

e Can use existing proton driver (like SPS at CERN)

e Conventional pion production and capture (horn)
* Quadrupole pion-transport channel to decay ring

* Direct injection of pions into the decay ring to form circulating
muon beam subsequently used as a source of neutrinos w/o a
kicker

Target + horn Pion beam line
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* Neutrino interaction physics — nuSTORM can
measure neutrino cross sections precisely
 Significantly reduce the main source of
systematic errors for long base-line oscillation
experiments
* Short baseline neutrino oscillation physics — search
for sterile neutrinos
* Accelerator and Detector Technology Test Bed
* Proof of principle for the Neutrino Factory
concept
 Muon Collider R&D platform
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nuSTORM Overview oIS

Cooling ring
demonstration platform

Target'Q RF
Optional ., Muon Decay Ring

Neutrino Beam

Facility to provide a muon beam for U — e + .+ v,
precision neutrino interaction physics A i
Bl € Ve iy,

Accelerator & Detector technology test T e

bed ™ —pt + v,

»Potential for intense low energy muon beam

® Enables p decay ring R&D (instrumentation) & technology demonstration platform
o Provides a neutrino Detector Test Facility

® Test bed for a new type of conventional neutrino beam

Study of sterile neutrinos
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 Serious proposal
developed for FNAL

* FNAL taken to project 418
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Neutrino Flux
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- Multiple channels available

*Good time separation

*Good source of electron neutrinos!
*Polarity of muon beam would be switched
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Sterile neutrino search @ FNAL
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NUSTORM siting at CERN
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e Extraction from SPS hrbgh eiStih tunnel

* Siting of storage ring:
* Allows measurements to be made ‘on or off axis’
* Preserves sterile-neutrino search option

12
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Cross section programme: novel energy range

* Guidance from: 0 :
* Models: T2
* Region of overlap I 3
0.5—8 GeV w03
50-6f 3
 DUNE/Hyper-K far detector Soak
spectra: Bz 2
* 0.3—6 GeV " o L
E, (GeV)
* Cross sections depend on: ol | Neatriomode: Apparance
e Q%and W: 3" —smcdes S Hyperk
* Assume (or specify) a detector g” —oee P o
capable of: E 0 g =
150 —
* Measuring exclusive final states § 100 == S5
* Reconstructing Q*and W e B B e 520: R VR Y S T R %?z:

rec
hd % E S8 < 6 G eV Reconstructed Energy (GeV) Reconstructed Energy Ev (GeV)

* So, stored muon energy range:

1<Eu<6GeV
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Storage ring designs

. FODO design (example: A. Liu’s design)
Separate-function magnets
* Relative momentum acceptance ~+9%
* Large, natural chromaticity, some losses induced by resonances

* Zero dispersion in the injection/production straight
Good efficiency of muon storage and neutrino production

* Full FFA (Fixed Field Alternating gradient) design
* Combined function magnets
* Relative momentum acceptance ~+16% or more
* Zero chromaticity, no resonance crossing

» Small dispersion and scalope angle in the the injection/production straight
Reduced efficiency of muon storage and some effects on the neutrino spectrum

. Hybrld design

Combr|1ned function magnets in the arcs and in the return straight, quads in the injection/production
straight

* Relative momentum acceptance ~+16%
* Relatively small chromaticity originating from the injection/production straight

* Tune spread between integer and half integer lines
* Some extra correction possible

» Zero dispersion in the injection/production straight
Good efficiency of muon storage and neutrino production
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Hybrid design assumptions

* Long straight sections kept at 180m (as in FNAL designs)

e Arc modified to accommodate higher momentum (up to 6.5
GeV/c orbit)

* Dispersion in the arcs is kept smaller to reduce the magnet
aperture

* FFA parts (both arcs and straight FFA) were made with a
fully transparent optics (both phase advances modulo 7).

* For the quad production the solution made of regular cells
is selected

e Extra matching sections added in the straight FFA part
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matching sections,

Straight FFA Production straight, quads FFA magnets
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* SC magnets in the arcs

* NC magnets in the straights

e Several types of the lattice
cells combined

* Injection in the dedicated
straight at the end of the arc

Bz [T]
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Good dispersion matching to zero in
the production straight

Relatively large beta functions in the
production straight for good
neutrino production efficiency
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momentum spread
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Hybrid ring, tracking
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 Good DA in both planes
* Cross check with PyZgoubi (work in progress)
e Tracking with the full beam distribution (next step)
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Current focus and near future plans for
Hybrid design

* Work on the Hybrid FFA design:

* Cross check between codes
* Possibly a modest chromaticity correction to reduce the tune spread to ~0.2
* Further design work on injection

 Evaluation of the performance: momentum spread, DAs, transmission

and the neutrino fluxes, and comparison with other lattices (FODO,
full FFA).
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Update 2018-2020

nuSTORM at CERN: Executive Summary

Contact*: K. Long
Imperial College London, Exhibition Road, London, SWZ 2AZ, UK; and
STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, 0X11 00X, UK

Abstract

The Neutrinos from Stored Muons, nuSTORM, facility has been designed to
deliver a definitive neutrino-nucleus scattering programme using beams of W)
and \r;;, from the decay of muons confined within a storage ring. The facil-
ity is unique, it will be capable of storing ;* beams with a central momen-
tum of between 1 GeV/c and 6 GeV/c and a momentum spread of 16%. This
specification will allow neutrino-scattering measurements to be made over the
kinematic range of interest to the DUNE and Hyper-K collaborations. At nuS-
TORM, the flavour composition of the beam and the neutrino-energy spectrum
are both precisely known. The storage-ring instrumentation will allow the neu-
trino flux to be determined to a precision of 1% or better. By exploiting so-
phisticated neutrino-detector techniques such as those being developed for the
near detectors of DUNE and Hyper-K, the nuSTORM facility will:

— Serve the future long- and short-baseline neutrino-oscillation pro-

by providing definitive of (uiA and (I/‘JLA scat-
tering cross-sections with percent-level precision;

— Provide a probe that is 100% polarised and sensitive to isospin to allow
incisive studies of nuclear dynamics and collective effects in nuclei;

— Deliver the capability to extend the search for light sterile neutrinos be-
yond the sensitivities that will be provided by the FNAL Short Baseline
Neutrino (SBN) programme; and

— Create an essential test facility for the development of muon accelerators
to serve as the basis of a multi-TeV lepton-antilepton collider.

To maximise its impact, nuSTORM should be implemented such that data-
taking begins by ~ 2027 /28 when the DUNE and Hyper-K collaborations will
each be accumulating data sets capable of determining oscillation probabilities
with percent-level precision.

‘With its existing proton-beam infrastructure, CERN is uniquely well-placed to
implement nuSTORM. The feasibility of implementing nuSTORM at CERN
has been studied by a CERN Physics Beyond Colliders study group. The muon
storage ring has been optimised for the neutrino-scattering programme to store
muon beams with momenta in the range 1 GeV to 6 GeV. The implementation
of nuSTORM exploits the existing fast-extraction from the SPS that delivers
beam to the LHC and to HiRadMat. A summary of the proposed implemen-
tation of nuSTORM at CERN is presented below. An indicative cost estimate
and a preliminary discussion of a possible time-line for the implementation of
nuSTORM are presented the addendum.

* Author list presented in the addendum.
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Addendum to the Executive Summary of nuSTORM at CERN

Editors of the ESPPU Executive Summary:
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PRISM - Phase Rotated Intense Slow Muon beam

e Charged lepton flavor violation (cLFV) is strongly suppressed in the Standard Model, its
detection would be a clear signal for new physics!

e The p- + N(A,Z)>e- + N(A,Z) seems to be the most broadly sensitive laboratory for cLFV.
e COMET and Mu2e will seek a signal, but next steps are needed either in the case of a
discovery (to further explore a new phenomenon) or further exclusion limits (to continue
the search)

* The PRISM/PRIME experiment based on an FFA ring was proposed (Y. Kuno, Y. Mori) for a
next generation cLFV search in order to:

- reduce the muon beam energy spread by phase rotation,

- purify the muon beam in the storage ring.

* PRISM requires a compressed proton bunch and high power proton beam

* This will provide a single event sensitivity of 3x10%°

| | | | [ | | | | | | | | |
High Energy
Advanced Phase

Spread

Energy

Energy

- Low Energy
DCelayed Phase
1 | 1

Phase Phase



Conceptual Layout of PRISM/PRIME

Detector Solenoid

Spectrometer Solenoid

Muon Stoppin
Tah:.peF:FJ 9

Muon Storage Ring

(Phase Rotator) Pion and Muon

Transport Solenoid

Pulsed Proton Beam

Pion Production
Target

Pion Capture Solenoid

J. Pasternak



Challenges for the PRISM accelerator system

* The need for the compressed proton bunch:
e isin full synergy with the Neutrino Factory and a Muon Collider.
e puts PRISM in a position to be one of the incremental steps of the muon
programme.
* opportunities to realise in existing proton drivers (like J-PARC) or future ones
(like PIP-II at FNAL).
* Target and capture system:
e isin full synergy with the Neutrino Factory and a Muon Collider studies.
* requires a detailed study of the effect of the energy deposition induced by the
beam in SC solenoids
* Design of the muon beam transport from the solenoidal capture to the PRISM FFA ring.
» very different beam dynamics conditions.
* very large beam emittances and momentum spread.
* Muon beam injection/extraction into/from the FFA ring.
* very large beam emittances and momentum spread.
» affects the ring design in order to provide the space and the aperture.
* RF system
* large gradient at the relatively low frequency and multiple harmonics (the
“sawtooth” in shape).



R&D work in Osaka

* 10 cell DFD ring has been designed

* FFA magnet-cell has been constructed and verified.

* RF system has been tested and assembled.

* 6 cell ring was assembled and its optics was verified
using a particles.

* Phase rotation was demonstrated for a particles.

A. Sato et al., Conf. Proc. C 0806233, THPP0OO7 (2008)

6 cell FFA ring at RCNP
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First Design Parameters, A. Sato
PRISM-FFA | Phase Rotator

@ N=10
Q) k=46
Q F/D(BL)=6.2

& 10=6.5m for 68MeV/c

© half gap = 17cm

& mag. size 110cm @ F center
& Radial sector DFD Triplet

Q BF/2:2.2deg

@ GDzl.ldeg

& Max. field

QF:04T

©D:0065T

@ fune

@h:273

Qv:158

V per turn ~2-3 MV

Ap/p at injection = £ 20%
Ap/p at extraction = + 2% (after 6 turns ~ 1.5 us)
h=1

BRYHLA
Foh—RBER

AstH
Fuh—ERE

5m
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PRISM parameters

Parameter Value

Target type solid

Proton beam power ~1 MW
Proton beam energy ~ GeV
Proton bunch duration ~10 ns total
Pion capture field 10-20T
Momentum acceptance +20 %
Reference rmomentum 40-68 MeV/c
Harmonic number 1

Minimal acceptance (H/V)

3.8/0.5 t ¢cm rad or more...

RF voltage per turn 3-5.5 MV

RF frequency 3-6 MHz
Final momentum spread +2%
Repetition rate 100 Hz-1 kHz

J. Pasternak
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Baseline FDF scaling FFA design

J. Pasternak

*FDF symmetry motivated by

the success of ERIT at Kyoto University
* 10 cells

k 4.3

‘R 7.3 m

1+@,Q) (245 1.85)
1 * Minimal drift length 3m




Baseline FDF scaling FFA design (2)
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Selected Showmass’'21 submissions

* A Phase Rotated Intense Source of Muons (PRISM) for a p—>e Conversion
Experiment, SNOWMASS21-RF5 RFO-AF5 AFO_J Pasternak-096.pdf

 Bunch Compressor for the PIP-Il Linac, SNOWMASS21-AF5_ AFO-
RF5_RFO Prebys-071.pdf

* SNOWMASS21-RF5 RFO-AF5 AFO Robert Bernstein-027.pdf

A Phase Rotated Intense Source of Muons (PRISM)
for a 1 — ¢ Conversion Experiment
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New concepts for injection

 Beam from the solenoid enters dispersion creator made of rectangular dipoles

* FFA matching section matches betatron functions, while preserving dispersion

* Horizontal deflectors (two sector bends) allows to pass around the main FFA magnets
while entering into the FFA ring

* Dispersion flips

* Vertical magnets allows to create the necessary gap for the horizontal deflectors and
match the vertical dispersion

* System under study/work in progress (R. Feng, IC)

Vertical i Beam from the

2Pt , Vertical solenoid
Horizontal deflectors dispersion
matching /
FFA ring //
- Dispersion
FFA matching Creator
section

J. Pasternak



New concepts for injection (2)
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Transition from the solenoid to the AG lattice

* Beam from pion capture/muon decay is
transported in ~3T solenoid
* In G4BeamLine simulation beam is launched
matched inside 3T solenoid
o 45 MeV/c reference momentum is assumed
* Field is switched off adiabatically, while beam is
matched transversely to the AG lattice

Beam is
launched
here

Dispersion creator starts here

\

4

From R. Feng, IC



Preliminary injection line study

Dispersion
Creator Solenoidal

Part of the FFA matching section ' _
matching coils

Beam from
the solenoid

From
R. Feng, IC




Layout of the injection line and the PRISM ring




Vertical FFA

Bird’s-eye view

-0.1 T T T T
& “Electron cyclotron” Ve
- -0.2
&Beam orbit rises vertically.
) -0.3
¢ Circumference constant with beam energy. .
-0.4
& Magnetic field increases exponentially
vertically. 0.5 |
& Zero-chromatic for any momentum range. -0.6 | | | | |

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
X and y

Magnetic field law for VFFA

Eg%ﬁ%’ml JB Lagrange - 21/01/20 - Imperial College




R&D for ISIS-II

Orbits with acceleration

Top view
’
- Separation of orbits reduces logarithmically. 0.5
]
g U o
11.94 MeV < -0.5} 11.94 MeV
9.16 MeV 9’76 MV
674 MoV U
4.68 MeV 45 . 300Mev
* Proposal for the downscaled test N 3 MeV “0 05 1 15 2 25
ring using FETS at RAL as an -0.2- 7 JUIlISRRN 9] z[ml
injector 04 ~ Side view
* To demonstrate VFFA 0.6 | 0 11.94 MeV
* To show high intensity y [m] 238 Mev
o . 08 025 - 4B8NMeV
peration AT _ - 3.00 MeV-—
* To test injection/extraction -1 /’*‘" U 4 % 05 T
* Vertical magnet prototype will be -6 4 0 2
: 2 2 0.75|
tested first. ceionce and 0o 2 4 4- [m]
s, M AL e e

0 05 1 15 2 25
z [m]

From S. Machida



VFF is an ideal accelerator for relativistic particles like
muon as it’'s momentum compaction factor is zero!

First design out of one day work

First designs for a

Muon Collider are 10 to 300 GeV/c muon accelerator
emerging!
Momentum range 10 - 300 GeV/c
T Craumence Tt
___________ Maximum feId e 02T
Number of cell 1000
A M o
""""" FODOcelllength . 12m
------ Leh-éth ofmé-,traig-ﬂt sechon 2 m
~ Lengthof magnets | am
"""""" Field indexm 1+ 8
"""""" Orbitexcursion ~ +  0.425m
© Tune per cell in decoupled space | (0.3109, 0.2239)

* this is simply because the design is not optimised.

From S. Machida 15 & e ot
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Tl e LhAR,

Laser-hybrid Accelerat
Radiobiological Applications

* Laser hybrid Accelerator for Radiobiological Applications (LhARA) was
proposed within the Centre for the Clinical Application of Particles
(CCAP) at Imperial College London as a facility dedicated to the
systematic study of radiobiology.

* It will allow study with proton beams with a flexible dose delivery
(including a novel FLASH regime) at Stage 1

* It will open the study to use multiple ions (including Carbon) at Stage2
for both in-vitro and in-vivo end stations.

* It aims to demonstrate a novel technologies for next generation
hadrontherapy.
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~ondon Layout of the full LhARA facility — °°

. Gabor Lens ) .
. eam tot ow
+ Octupole end station end station
* Collimator f '

. i Extraction

* Quadrupole line
- Beam Dump Extraction line

" Kicker Magnet matching

Fixed field
accelerator ring

In vivo beam line

matching
Beam to the RF cavities for
in vivo end longitudinal
station phase space ‘ \/‘/\ Matching and
manipulation Beam from the energy selection
laser target C
‘apture
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LhARA Ring Parameters
1.375F
o 1.25

° N 10 -4 -
* k 5.33 PP |
* Spiral angle 48.7°
* Rmax 3.48 m
* Riin 2.92m b5  2.625 2.75 2.875 3
* (Qx, Qy) (2.83, 1.22)
* Brmax 14T
* Ps 0.34

 Max Proton injection energy 15 MeV
* Max Proton extraction energy 127.4 MeV

*h 1 .
* RF frequency £
for proton acceleration (15-127.4MeV) 2.89 — 6.48 MHz =
 Bunch intensity fewx108 protons _
« Range of other extraction energies possible 1
 Other ions also possible
J. Pasternak, IC London OO 0.20.40.060.8 1 1.21.41.6 0

s [m]



[mrad]

Xl

LhARA Ring Tracking

-0.
Performed using proven stepwise tracking code g
It takes into account fringe fields and non-linear field components m ;

Results show dynamical acceptances are much larger than physical ones

No space charge effects included yet -0.

0 0.20.40.60.8 1 1.21.41.61.8

S

[m]

Tracking performed using FixField code 0.
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Imperial College . . M T a—
London FFA Ring with subsystems -

Parameter unit value . . @ extraction extraction
Injection septum: extraction Ime/ p Gﬂ feptu m
nominal magnetic field T 0.53 g’ - —
magnetic length m 0.9 @
deflection angle degrees | 48.7 - - «Q
thickness cm 1
full gap cm 3
pulsing rate Hz 10
Extraction septum:
nominal magnetic field T 1.12
magnetic length m 0.9 :
deflection angle degrees | 34.38 2
thickness cm 1
full gap cm 2
pulsing rate Hz 10
Injection kicker:
magnetic length m 0.42
magnetic field at the flat top T 0.05
deflection angle mrad 374
fall time ns 320
flat top duration ns 25
full gap cm 3
Extraction kicker:
magnetic length m 0.65
magnetic field at the flat top T 0.05
deflection angle mrad | 19.3 %S@
rise time ns 110 switching B % <
flat top duration ns 40 diool 9, =
ipole m
full gap cm 2




Magnet types to
be considered

Essential R&D

M| fe T

10—

T T T T T T
0 10 20 30 1 50 L1 ™ £l

i 1
3400.0

" 1 1 i L n L i
2800.0 3000.0 32000 3600.0

For LhARA magnet with parallel gap with distributed
windings (but a single current) would be of choice with
gap controlled by clamp. Concepts like an active clamp
could be of interest too.

Another important aspect of the R&D is the technology
transfer for Magnetic Alloy (MA) loaded RF cavities for the
ring

Magnet with distributed conductors:
* Parallel gap — vertical tune more stable,
* Flexible field and k adjustment,

,Gap shaping” magnet:

*Developed by SIGMAPHI for RACCAM project
*Initialy thought as more difficult

*Behaves very well

*Chosen for the RACCAM prototype construction

= A I
=il '} 8.

J. Pasternak, IC London
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Conclusions

* Thanks to their unique properties, like high acceptance and lack of ramping,
FFA accelerators may be ideally suited as muon machines.

* nuSTORM is a serious candidate to serve both neutrino physics and R&D for a
Muon Collider

* PRISM may become the next generation flagship programme for lepton
flavour violation

* VFFA can be an ideal machine for muon acceleration in a Muon Collider and
also serve for ISIS-II. Its technology may be addressed in a prototype ring
FETS-FFA.

* FFAs can be applied in radiobiology (LhARA) or in a future hadrontherapy.



