

Fixed Field Accelerators for Muon Physics and More

J. Pasternak

11/02/2021, IPPP

Outline

- Introduction: What is FFA?
- nuSTORM
- PRISM
- VFFA
 - For ISIS-II
 - For a Muon Collider
- LhARA
- Conclusions

FFA – Fixed Field Alternating gradient accelerators

- Invented independently by A. Kolomensky, T. Okhava and K. Symon in 50ties
- They enjoyed rapid developments at the time and almost vanished afterwards
- They came back in 2000 with the first proton FFA developed at KEK by Y. Mori's group

FFA and their properties

Mark I, first FFA

Advantages of FFAs for muon accelerators:

- Lack of ramping
- Large intrinsic momentum acceptance
- Typically large transverse acceptance

FFA complex at KURNS

FFA vs other circular machines

Machine	Cyclotron	Synchrotron	FFA	
Magnetic field	constant	changing	constant	
RF frequency	constant	changing	changing (not always)	
Orbit	changing	constant	changing	
Tune	changing	constant	constant (not always)	

nuSTORM - Origin - Idea

- nuSTORM (`NeUtrinos from STORed Muons') is a facility based on a low-energy muon decay ring.
- Can use existing proton driver (like SPS at CERN)
- Conventional pion production and capture (horn)
 - Quadrupole pion-transport channel to decay ring
 - Direct injection of pions into the decay ring to form circulating muon beam subsequently used as a source of neutrinos w/o a kicker

- Neutrino interaction physics nuSTORM can measure neutrino cross sections precisely
 Significantly reduce the main source of
 - systematic errors for long base-line oscillation experiments
- Short baseline neutrino oscillation physics search for sterile neutrinos
- Accelerator and Detector Technology Test Bed
 - Proof of principle for the Neutrino Factory concept
 - Muon Collider R&D platform

• Test bed for a new type of conventional neutrino beam

nuSTORM @ FNAL

- Serious proposal developed for FNAL
- FNAL taken to project definition report stage

50 FASEMENT FRO

TARGET HALL

Neutrino Flux

- Multiple channels available
- •Good time separation
- •Good source of electron neutrinos!
- •Polarity of muon beam would be switched

Sterile neutrino search @ FNAL

Adey et al., PRD 89 (2014) 071301

Imperial College London nuSTORM siting at CERN

- Extraction from SPS through existing tunnel
- Siting of storage ring:
 - Allows measurements to be made 'on or off axis'
 - Preserves sterile-neutrino search option

1.2

Cross section programme: novel energy range

- Guidance from:
 - Models:
 - Region of overlap 0.5—8 GeV
 - DUNE/Hyper-K far detector spectra:
 - 0.3-6 GeV
- Cross sections depend on:
 - Q^2 and W:
 - Assume (or specify) a detector capable of:
 - Measuring exclusive final states
 - Reconstructing Q^2 and W •
 - $\rightarrow E_{\mu} < 6 \text{ GeV}$
- So, stored muon energy range:

 $1 < E_{u} < 6 \text{ GeV}$

Storage ring designs

- FODO design (example: A. Liu's design)
 - Separate-function magnets
 - Relative momentum acceptance ~±9%
 - Large, natural chromaticity, some losses induced by resonances
 - Zero dispersion in the injection/production straight
 - Good efficiency of muon storage and neutrino production
- Full FFA (Fixed Field Alternating gradient) design
 - Combined function magnets
 - Relative momentum acceptance ~±16% or more
 - Zero chromaticity, no resonance crossing
 - Small dispersion and scalope angle in the the injection/production straight
 - Reduced efficiency of muon storage and some effects on the neutrino spectrum
- Hybrid design
 - Combined function magnets in the arcs and in the return straight, quads in the injection/production straight
 - Relative momentum acceptance ~±16%
 - Relatively small chromaticity originating from the injection/production straight
 - Tune spread between integer and half integer lines
 - Some extra correction possible
 - Zero dispersion in the injection/production straight
 - Good efficiency of muon storage and neutrino production

Hybrid design assumptions

- Long straight sections kept at 180m (as in FNAL designs)
- Arc modified to accommodate higher momentum (up to 6.5 GeV/c orbit)
- Dispersion in the arcs is kept smaller to reduce the magnet aperture
- FFA parts (both arcs and straight FFA) were made with a fully transparent optics (both phase advances modulo π).
- For the quad production the solution made of regular cells is selected
- Extra matching sections added in the straight FFA part

Imperial College London Hybrid design

Hybrid optics

- Good dispersion matching to zero in the production straight
- Relatively large beta functions in the production straight for good neutrino production efficiency

Tune shift for ±16% relative momentum spread

Hybrid ring, tracking

- Good DA in both planes
- Cross check with PyZgoubi (work in progress)
- Tracking with the full beam distribution (next step)

Current focus and near future plans for Hybrid design

- Work on the Hybrid FFA design:
 - Cross check between codes
 - Possibly a modest chromaticity correction to reduce the tune spread to ~0.2
 - Further design work on injection
- Evaluation of the performance: momentum spread, DAs, transmission and the neutrino fluxes, and comparison with other lattices (FODO, full FFA).

European Strategy Update 2018-2020

Institute of Theoretical Physics, University of Wroclaw, pl. M. Borna 9,50-204, Wroclaw, Poland

Americas:29Asia:7Europe:81Total:117

nuSTORM at CERN: Executive Summary

Contact*: K. Long

Imperial College London, Exhibition Road, London, SWZ 2AZ, UK; and STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK

Abstract

The Neutrinos from Stored Muons, nuSTORM, facility has been designed to deliver a definitive neutrino-nucleus scattering programme using beams of $\dot{\nu}_e$ and $\dot{\nu}_\mu$ from the decay of muons confined within a storage ring. The facility is unique, it will be capable of storing μ^\pm beams with a central momentum of between 1 GeV/c and 6 GeV/c and a momentum spread of 16%. This specification will allow neutrino-scattering measurements to be made over the kinematic range of interest to the DUNE and Hyper-K collaborations. At nuS-TORM, the flavour composition of the beam and the neutrino-entry spectrum are both precisely known. The storage-ring instrumentation will allow neutrino flux to be determined to a precision of 1% or better. By exploiting sophisticated neutrino-detector techniques such as those being developed for the near detectors of DUNE and Hyper-K, the nuSTORM facility will:

Update

J.T. Sobczyk

- Serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of ⁽⁻⁾/_{ν_e}A and ⁽⁻⁾/<sub>ν_µA scattering cross-sections with percent-level precision;
 </sub>
- Provide a probe that is 100% polarised and sensitive to isospin to allow incisive studies of nuclear dynamics and collective effects in nuclei;
 Deliver the capability to extend the search for light sterile neutrinos be-
- yond the sensitivities that will be provided by the FNAL Short Baseline Neutrino (SBN) programme; and
- Create an essential test facility for the development of muon accelerators to serve as the basis of a multi-TeV lepton-antilepton collider.

To maximise its impact, nuSTORM should be implemented such that data-taking begins by $\approx 2027/28$ when the DUNE and Hyper-K collaborations will each be accumulating data sets capable of determining oscillation probabilities with percent-level precision.

With its existing proton-beam infrastructure, CERN is uniquely well-placed to implement nuSTORM. The feasibility of implementing nuSTORM at CERN has been studied by a CERN Physics Beyond Colliders study group. The muon storage ring has been optimised for the neutrino-scattering programme to store muon beams with momenta in the range 1 GeV to 6 GeV. The implementation of nuSTORM exploits the existing fast-extraction from the SPS that delivers beam to the LHC and to HiRadMat. A summary of the proposed implementation of nuSTORM at CERN is presented below. An indicative cost estimate and a preliminary discussion of a possible time-line for the implementation nuSTORM are presented the addendum.

	K.T. McDonald				
	Princeton University, Princeton, NJ, 0				
		N. McCauley, C. Touramanis		1	
	G. Hanson	Department of Physics, Oliver Loage La	S.J. Blice, A.D. Bloss, S. F	ener, iv. wioknov,	Addendum to the Executive Summary of nuSTORM at CERN
	Department of Physics and Astronomy		S. Striganov		,
		J. Lopez Pavon [†]	Fermilab, P.O. Box 500, Ba	tavia, 1L 00510-50	
	D. Orestano, L. Tortora	Departamento de Física Teórica and Ins			Editors of the ESPPU Executive Summary:
	INFN Sezione di Roma Tre and Dipar	Madrid, Cantoblanco, 28049 Madrid, Sp	C.C. Ahdida, W. Bartmann	J. Bauche, M. Ca	
		[†] Theoretical Physics Department, CERN, 12	ont, A. de Roeck, F.M. Vel	otti	C.C. Ahdida ¹ , R. Appleby ² , W. Bartmann ¹ , J. Bauche ¹ , M. Calviani ¹ , J. Gall ¹ , S. Gilardoni ¹
	DE Edagoook ID Loopana W Mu		CERN,CH-1211, Geneva 2	3, Switzerland	B Goddard ¹ C Hessler ¹ P Huber ³ I Efflymionoulos ¹ IB Lagrange ⁴ M Lamont ¹
	K.E. Edgecock, J.B. Lagrange, w. Mu	R. Appleby, S. Tygier	[†] Also at PRISMA Cluster of a	Excellence, Johanne	K Long ^{5,4} IA Ochorne ¹ I Pacternal ^{5,4} FIP Solar ⁶ S Trajar ¹ and FM Valotti ¹
	SIFC Kunerjora Appleion Laboralor	The University of Manchester, 7.09. Sch			R. Long , S.R. Osborne, S. Pasternak, P.S.P. Soler, S. Pygler, and P.M. Feloni
		Institute, Daresbury Laboratory, WA4 4A	A. Blondel, E.N. Messomo	F. Sanchez Nieto	¹ CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland
	J.A. Hernando Morata		University de Geneve, 24, 0	Duai Ernest-Anser	² School of Physics & Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
	Universidade de Santiago de Composi	H A Tanaka			⁴ Virginia Polytechnic Institute and State University, 925 Prices Fork Road, Blacksburg, VA 24061, USA ⁴ STEC, Butharford Appleton Laboratory, Hanvall Computer Dideot, OV1100Y.
	ago de Compostela, Spain	SIAC National Academator Laboratory	LL Gomez-Cadenas		⁵ Imperial College London, Exhibition Road, London, SWZ 2AZ, UK
		SEAC Nutional Accelerator Eaboratory,	Donostia International Phy	sics Center (DIPC	⁶ School of Physics and Astronomy, University of Glasgow, Glasgow, G12 800, UK
	C. Booth	14 D	bastián Ginuzkoa Spain	sies cenier (Bir e	
	University of Sheffield, Dept. of Physic	M. Bonesini	bushun, cipustou, spuin		
		Sezione INFN Milano Bicocca, Dipartim	TI March		
	S.R. Mishra		U. Mosel	1	
	Department of Physics and Astronomy	A. de Gouvêa	Justus Liebig Universitäi,m	, Luawigstrape 25	
		Northwestern University, Dept. of Phy			1 Full author list
	S Bhadra	60208-3112 USA	R. Bayes, SP. Hallsjö, F.J.	P. Soler	
	Department of Physics and Astronom		School of Physics and Astro	nomy, Kelvin Buil	The full author list is presented to indicate the community that is interested in the implementation and
	Canada	Y. Kuno, A. Sato	UK		exploitation of hus l'ORM.
	Cumuu	Osaka University, Graduate School, Sch			
	L Alverrer Russ A Comore A Da	0043, Japan	H.M. O'Keeffe, L. Kormos	, J. Nowak, P. Rate	S. Goswami
	L. Alvalez Ruso, A. Celvela, A. Do M. Soral, P. Stomoulio		Physics Department, Lance	ster University, L	Physical Research Laboratory, Ahmedabad 380009, India
	Instituto de Fision Comusaulas (IEIC	S.K. Agarwalla			
	tarma Apartado 22085 46071 Valana	Institute of Physics, Sachivalava Marg, S	D. Colling, P. Dornan, P. D	unne, P.M. Jonsso	F. Filthaut [†]
	terna, Apartado 22005, 40071 valenci		macher, J. Pasternak, M. So	ott, J.K. Sedgbeer	Nikhef, Amsterdam, The Netherlands
		W. Winter	Physics Department, Black	ett Laboratory, I	[†] Also at Radboud University, Nijmegen, The Netherlands
	M. Chung	Deutsches Elektronen-Synchrotron Notk	2AZ, UK		
	UNIST, Ulsan, Korea	Deutscnes Elektronen-Synchronoli, Hoik	[†] Also at STFC, Rutherford A	pleton Laboratory,	J. Tang
		K M.L.			Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
	M. Hartz [†]	K. Mann	E di Lodovico		
	TRIUMF, 4004 Wesbrook Mall, Vanco	High Energy Physics, Biomedical-Physic	Oueen Mary University of	ondon. Mile End	P Kyberd D R Smith
	[†] Also at Department of Physics, Universi	Ka, Easi Lansing, MI 48824, USA	2		College of Engineering Design and Physical Sciences, Brunel University London, Uxbridge, Middlesey
		+	P. Nichol		UB8 3PH 11K
	M. Palmer	D. Wark, A. Weber [†]	Department of Physics and	Astronomy Univ	000371,01
	Brookhaven National Laboratory, P.O	Particle Physics Department, The Denys	UV	Astronomy, Onive	M & 17-1-1.
		[†] Also at STFC, Rutherford Appleton Labora	0K		M.A. Uchida
	P. Huber, C. Mariani, J.M. Link, V. Pa				Cavendish Laboratory (HEP), JJ Thomson Avenue, Cambridge, CB3 0HE, UK
	Virginia Polytechnic Inst. and State U	L.Cremaldi, D. Summers	S.A. Bogacz		
_	0 0 0 0000	University of Mississippi, Oxford, MS, U	1 nomas Jefferson National	Accelerator Facili	D.M. Kaplan, P. Snopok
	LI Back G Barker S.B. Boyd P.Fr				Illinois Institute of Technology, Chicago, IL, USA
	Department of Physics University of	L. Stanco	Y. Mori		
	separateni of raysies, oniversity of	INFN, Sezione di Padova, 35131 Padova	Kyoto University, Research	Reactor Institute,	M. Hostert, S. Pascoli
			0494 Japan		Institute for Particle Physics Phenomenology, Department of Physics, University of Durham, Science
	I				Laboratories, South Rd, Durham, DH1 3LE, UK

"Author list presented in the addendum.

+ Snowmass LOI submitted

PRISM - Phase Rotated Intense Slow Muon beam

• Charged lepton flavor violation (cLFV) is strongly suppressed in the Standard Model, its detection would be a clear signal for new physics!

- The μ + N(A,Z) \rightarrow e- + N(A,Z) seems to be the most broadly sensitive laboratory for cLFV.
- COMET and Mu2e will seek a signal, but next steps are needed either in the case of a discovery (to further explore a new phenomenon) or further exclusion limits (to continue the search)
- The PRISM/PRIME experiment based on an FFA ring was proposed (Y. Kuno, Y. Mori) for a next generation cLFV search in order to:
- reduce the muon beam energy spread by phase rotation,
- purify the muon beam in the storage ring.
- PRISM requires a compressed proton bunch and high power proton beam
- This will provide a single event sensitivity of 3×10⁻¹⁹

Conceptual Layout of PRISM/PRIME

Challenges for the PRISM accelerator system

• The need for the compressed proton bunch:

- is in full synergy with the Neutrino Factory and a Muon Collider.
- puts PRISM in a position to be one of the incremental steps of the muon programme.
- opportunities to realise in existing proton drivers (like J-PARC) or future ones (like PIP-II at FNAL).
- Target and capture system:
 - is in full synergy with the Neutrino Factory and a Muon Collider studies.
 - requires a detailed study of the effect of the energy deposition induced by the beam in SC solenoids
- Design of the muon beam transport from the solenoidal capture to the PRISM FFA ring.
 - very different beam dynamics conditions.
 - very large beam emittances and momentum spread.
- Muon beam injection/extraction into/from the FFA ring.
 - very large beam emittances and momentum spread.
 - affects the ring design in order to provide the space and the aperture.
- RF system
 - large gradient at the relatively low frequency and multiple harmonics (the "sawtooth" in shape).

R&D work in Osaka

- 10 cell DFD ring has been designed
- FFA magnet-cell has been constructed and verified.
- RF system has been tested and assembled.
- 6 cell ring was assembled and its optics was verified using α particles.
- \bullet Phase rotation was demonstrated for α particles.
- A. Sato et al., Conf. Proc. C 0806233, THPP007 (2008)

6 cell FFA ring at RCNP

First Design Parameters, A. Sato

PRISM parameters

Parameter	Value
Target type	solid
Proton beam power	~1 MW
Proton beam energy	~ GeV
Proton bunch duration	~10 ns total
Pion capture field	10 -20 T
Momentum acceptance	±20 %
Reference µ⁻momentum	40-68 MeV/c
Harmonic number	1
Minimal acceptance (H/V)	$3.8/0.5 \pi$ cm rad or more
RF voltage per turn	3-5.5 MV
RF frequency	3-6 MHz
Final momentum spread	±2%
Repetition rate	100 Hz-1 kHz

Baseline FDF scaling FFA design

- Enge field fall-off used to study fringe fields using FixField code
- Enormous horizontal acceptance is achieved in simulations
- Vertical long term stability of ~3000 π .mm.mrad is achieved, however with some optimization
- ~5000 π .mm.mrad should be stable for a few turns.
- Further optimisation will be performed

J. Pasternak

Selected Snowmass'21 submissions

 A Phase Rotated Intense Source of Muons (PRISM) for a µ→e Conversion Experiment, SNOWMASS21-RF5_RF0-AF5_AF0_J_Pasternak-096.pdf

J. Pasternak

- Bunch Compressor for the PIP-II Linac, SNOWMASS21-AF5_AF0-RF5_RF0_Prebys-071.pdf
- SNOWMASS21-RF5_RF0-AF5_AF0_Robert_Bernstein-027.pdf

A Phase Rotated Intense Source of Muons (PRISM) for a $\mu \rightarrow e$ Conversion Experiment

R. B. Appleby,^{1,2} M. Aslaninejad,³ R. Barlow,⁴ R.H. Bernstein,⁵ B. Echenard,⁶ A. Gaponenko,⁵ D. J. Kelliher,⁷ Y. Kuno,^{8,9} A. Kurup,¹⁰ J.-B. Lagrange,⁷ M. Lancaster,¹ K. Long,¹⁰ K. Lynch,¹¹ S. Machida,⁷ S. Mihara,¹² Y. Mori,¹³ B. Muratori,^{14,2} J. Pasternak,^{10, 7, *} E. Prebys,¹⁵ C. R. Prior,⁷ A. Sato,⁸ D. Stratakis,⁵ S. Tygier,^{1,2} and Y. Uchida¹⁰

¹The University of Manchester. Department of Physics and Astronomy. Oxford Road, Manchester, M13 9PL, United Kingdom ²Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD, United Kingdom ³School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran ⁴ The University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK ⁵Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA ⁶California Institute of Technology, Pasadena, California 91125 USA ⁷ ISIS. STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK ⁸Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan ⁹Research Center of Nuclear Physics, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan ¹⁰Imperial College London, Exhibition Road, London SW7 2AZ, UK ¹¹ York College and the Graduate Center, CUNY, New York, NY 11451, USA ¹²Institute of Particle and Nuclear Studies (IPNS), KEK, Tsukuba, Ibaraki, 305-0801, Japan ¹³Institute for Integrated Radiation and Nuclear Science Department of Nuclear Engineering, Kyoto University, Kyoto, Japan ¹⁴ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire, United Kingdom ¹⁵UC Davis, Department of Physics and Astronomy, One Shields Avenue Davis, CA 95616 (Dated: September 1, 2020)

Letter of Interest: Bunch Compressor for the PIP-II Linac

E. Prebys¹, R. H. Bernstein², and J. Pasternak³

¹University of California, Davis, California 95616, USA
²Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
³Imerial College London, London SW7 2AZ, UK

A New Charged Lepton Flavor Violation Program at Fermilab

(ENIGMA: nExt geNeration experIments with hiGh intensity Muon beAms)

M. Aoki,¹ R.H. Bernstein,² L. Calibbi,³ F. Cervelli,⁴ C. Bloise,⁵ R. Culbertson,² André Luiz de Gouvêa,⁶ S. Di Falco,⁴ E. Diociaiuti,⁵ S. Donati,⁴ R. Donghia,⁵ B. Echenard,⁷ A. Gaponenko,² S. Giovannella,⁵ C. Group,⁸ F. Happacher,⁵ M. Hedges,⁹ D.G. Hitlin,⁷ C. Johnstone,² E. Hungerford,¹⁰ D. M. Kaplan,¹¹ M. Kargiantoulakis.² A. Knecht.¹² K. Kirch.¹³ M. Lancaster.¹⁴ A. Luca.² K. Lvnch.¹⁵ M. Martini.^{16,*} P. Murat,² S. Middleton,⁷ S. Mihara,¹⁷ J. Miller,¹⁸ S. Miscetti,⁵ L. Morescalchi,⁴ D. Neuffer,² A. Papa,⁴ J. Pasternak,¹⁹ E. Pedreschi,⁴ G. Pezzullo,²⁰ F. Porter,⁷ E. Prebvs,²¹ V. Pronskikh,² R. Rav,² F. Renga,²² I. Sarra,⁵ D. Stratakis,² N.M. Truong,²¹ A. Sato,¹ F. Spinella,⁴ M. Syphers,²³ and M. Yucel² ¹ Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan ²Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA[†] ³School of Physics, Nankai University, Tianjin 300071, China ⁴INFN Sezione di Pisa Ed. C Polo Fibonacci, Largo Pontecorvo 3, Pisa, Italy ⁵Laboratori Nazionali di Frascati dell'INFN, Via Enrico Fermi 40, 00044, Frascati, Italy ⁶Northwestern University Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208, USA ⁷California Institute of Technology, Pasadena, California 91125 USA ⁸Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA ⁹Department of Physics and Astronomy, 525 Northwestern Avenue, West Lafayette, IN 47907, USA ¹⁰Department of Physics, University of Houston, Houston TX,77204 USA ¹¹Illinois Institute of Technology, 10 West 35th Street Chicago, IL 60616, USA ¹²Paul Scherrer Institute, Villigen, Switzerland ¹³ETH Zurich Dep. Physik Otto-Stern-Weg 1, 8093 Zurich, Switzerland[‡] ¹⁴ The University of Manchester, Department of Physics and Astronomy, Oxford Road, Manchester, M13 9PL, United Kingdom ¹⁵ York College and the Graduate Center, CUNY, New York, NY 11451, USA ¹⁶Università degli Studi Guglielmo Marconi, 00193, Rome, Italy ¹⁷KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan ¹⁸Boston University, 590 Commonwealth Ave., Boston MA 02215, USA ¹⁹Imperial College London, Exhibition Road, London SW7 2AZ, UK[§] ²⁰Department of Physics, Yale University, 56 Hillhouse, New Haven, CT-06511, USA ²¹ UC Davis, Department of Physics and Astronomy, One Shields Avenue Davis, CA 95616 ²² Istituto Nazionale di Fisica Nucleare, Sez. di Roma, P. le A. Moro 2, 00185 Roma, Italy ²³Northern Illinois University, DeKalb, IL 60115, USA[¶] (Dated: August 29, 2020)

August 27, 2020

New concepts for injection

- Beam from the solenoid enters dispersion creator made of rectangular dipoles
- FFA matching section matches betatron functions, while preserving dispersion
- Horizontal deflectors (two sector bends) allows to pass around the main FFA magnets while entering into the FFA ring
 - Dispersion flips
- Vertical magnets allows to create the necessary gap for the horizontal deflectors and match the vertical dispersion
- System under study/work in progress (R. Feng, IC)

New concepts for injection (2)

Transition from the solenoid to the AG lattice

J. Pasternak

- Beam from pion capture/muon decay is transported in ~3T solenoid
 - In G4BeamLine simulation beam is launched matched inside 3T solenoid
 - 45 MeV/c reference momentum is assumed
- Field is switched off adiabatically, while beam is matched transversely to the AG lattice

From R. Feng, IC

Preliminary injection line study

Layout of the injection line and the PRISM ring

From R. Feng, IC

Vertical FFA

- @"Electron cyclotron"
- Geam orbit rises vertically.
- ©Circumference constant with beam energy.
- Magnetic field increases exponentially vertically.
- Sero-chromatic for any momentum range.

 $B_y(y,\theta) = B_0 e^{m_y(y-y_0)}$

Magnetic field law for VFFA

JB Lagrange - 21/01/20 - Imperial College

R&D for ISIS-II

Orbits with acceleration

• Separation of orbits reduces logarithmically.

- Proposal for the downscaled test ring using FETS at RAL as an injector
 - To demonstrate VFFA
 - To show high intensity operation
 - To test injection/extraction
- Vertical magnet prototype will be tested first.

From S. Machida

VFF is an ideal accelerator for relativistic particles like muon as it's momentum compaction factor is zero!

First designs for a Muon Collider are emerging! First design out of one day work 10 to 300 GeV/c muon accelerator

Momentum range	10 - 300 GeV/c
Circumference	12 km*
Maximum field	12 T*
Number of cell	1000
Radius	1910 m
FODO cell length	12 m
Length of straight section	2 m
Length of magnets	4 m
Field index m	8
Orbit excursion	0.425 m
Tune per cell in decoupled space	(0.3109, 0.2239)

15

* this is simply because the design is not optimised.

From S. Machida

Science & Technology Facilities Council

LhARA

- Laser hybrid Accelerator for Radiobiological Applications (LhARA) was proposed within the Centre for the Clinical Application of Particles (CCAP) at Imperial College London as a facility dedicated to the systematic study of radiobiology.
- It will allow study with proton beams with a flexible dose delivery (including a novel FLASH regime) at Stage 1
- It will open the study to use multiple ions (including Carbon) at Stage2 for both in-vitro and in-vivo end stations.
- It aims to demonstrate a novel technologies for next generation hadrontherapy.

Layout of the full LhARA facility

LhARA Ring Parameters

- N
- k
- Spiral angle
- R_{max}
- R_{min}
- (Qx, Qy)
- B_{max}
- p_f
- Max Proton injection energy
- Max Proton extraction energy
- h
- RF frequency

for proton acceleration (15-127.4MeV) 2.89 – 6.48 MHz

10

5.33

48.7°

1.4 T

0.34

- few×10⁸ protons • Bunch intensity
- Range of other extraction energies possible
- Other ions also possible

s [m]

LhARA Ring Tracking

- Performed using proven stepwise tracking code
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are much larger than physical ones
- No space charge effects included yet
- Tracking performed using FixField code

0

mm

7

15

20

25

FFA Ring with subsystems

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	ns	110
flat top duration	ns	40
full gap	cm	2

Essential R&D

Magnet types to be considered

- For LhARA magnet with parallel gap with distributed windings (but a single current) would be of choice with gap controlled by clamp. Concepts like an active clamp could be of interest too.
- Another important aspect of the R&D is the technology transfer for Magnetic Alloy (MA) loaded RF cavities for the ring

Magnet with distributed conductors:

- Parallel gap vertical tune more stable,
- Flexible field and k adjustment,

"Gap shaping" magnet:

- •Developed by SIGMAPHI for RACCAM project
- •Initialy thought as more difficult

•Behaves very well

•Chosen for the RACCAM prototype construction

Conclusions

- Thanks to their unique properties, like high acceptance and lack of ramping, FFA accelerators may be ideally suited as muon machines.
- nuSTORM is a serious candidate to serve both neutrino physics and R&D for a Muon Collider
- PRISM may become the next generation flagship programme for lepton flavour violation
- VFFA can be an ideal machine for muon acceleration in a Muon Collider and also serve for ISIS-II. Its technology may be addressed in a prototype ring FETS-FFA.
- FFAs can be applied in radiobiology (LhARA) or in a future hadrontherapy.