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ATLAS/CMS/LHCb because even though they have 

smaller acceptance, they have a smaller/zero background
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4Motivation

In order to be sure that the background is truly smaller (aim 
is usually “zero”), we need to perform careful simulations!

This is hard because in order to get a small background, we 
need to have a very thick shield in front of the detector. 

Dedicated LLP detectors can be complementary to 
ATLAS/CMS/LHCb because even though they have 

smaller acceptance, they have a smaller/zero background



5Challenge

Simulating many ten’s of Lambdas 
of absorber is not practical.



6Challenge

Simulating many ten’s of Lambdas 
of absorber is not practical.

For reference, the ATLAS calorimeter is ~10 Lambda 
and it takes O(min) for the highest energy particles



7Example: CODEX-b

x

'

SM

SM

CODEX-b box

UXA shield

shield veto

IP8Pb shield

DELPHI

LHCb

Currently 
available 

space

Concrete Wall

Lead/W shield

~25 m



8Backgrounds

K0, n, . . .
Primary: suppressed

K0, n, . . .

Pb shieldUXA shield

Neutral particles punching 
through the shield

Rate is small, but flux is large (!)



9Backgrounds

µ

K0, n, . . .
Irreducible: suppressed

shield veto

Pb shieldUXA shield

K0, n, . . .
Primary: suppressed

K0, n, . . .

Pb shieldUXA shield

Neutral particles 
produced in the shield Neutral particles punching 

through the shield
(Can be also be from neutrinos 

- more on that shortly)Rate is small, but flux is large (!)

Muon veto in middle of shield is critical 



10One solution: transfer matrices

Instead of simulating particles going through N 
lambdas, we simulate particles going through M < N 
lambdas and then fold this transfer matrix N/M times.
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12One solution: transfer matrices

Conservatively, angular 
rescattering within ~23 
degrees is all assigned 

to be forward 2, 5�

Instead of simulating particles going through N 
lambdas, we simulate particles going through M < N 
lambdas and then fold this transfer matrix N/M times.

In practice, N ~ 30-40 and M ~ 5. 
Simulation of a conical shell.



13One solution: transfer matrices

Pythia Geant4

Outgoing particles 
(Weighted carefully to for 

high-precision in tails)

Transfer matrix 
Binned in incoming/outgoing particle type, & (log) energy  
(in practice, one matrix per incoming type & energy bin)

(use shield physics list for high precision)

Mix and match 
matrices for 

Pb, W, 
concrete, and 
air as needed

Instead of simulating particles going through N 
lambdas, we simulate particles going through M < N 
lambdas and then fold this transfer matrix N/M times.

In practice, N ~ 30-40 and M ~ 5. 
Simulation of a conical shell.



14Transfer Matrices
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FIG. 7. The outgoing particle spectrum after 5� of W for an incoming µ� (top row), K0
L (middle row), and neutrons (bottom row) at various energies. These are a

selection of 15 grids from a total of 18 ⇥ 20: 18 species, logarithmically spaced in energy from 50 MeV to 300 GeV in 20 bins.

5 lambdas of W
Higher energy

(this is just a sample - many particles / energies not shown)
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FIG. 7. The outgoing particle spectrum after 5� of W for an incoming µ� (top row), K0
L (middle row), and neutrons (bottom row) at various energies. These are a

selection of 15 grids from a total of 18 ⇥ 20: 18 species, logarithmically spaced in energy from 50 MeV to 300 GeV in 20 bins.

e.g. ~0.2% of K 
longs punch through 

V. Gligorov, S. Knapen, B. Nachman, M. Papucci, D. Robinson, 1810.03636



15Convolved predictions

Pythia + Geant4 
for K long

III BACKGROUNDS B Simulation
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FIG. 23: Background fluxes per kinetic energy bin, comparing primary IP fluxes ⇥10�12 (green)
with the irreducible background flux (blue) after the (20+5)� passive and active shield. Also shown

are background fluxes ⇥10�4 entering the detector that are rejected by the shield veto (red).

56

(We also have matrices 
conditioned on muons 

so we can study 
correlated production)

CODEX-b/CODEX-β EOI, 1911.00481



16Convolved predictions

Pythia + Geant4 
for K long

Repeat for protons, anti-protons, neutrons, anti-
neutrons, muons, anti-muons, electrons, positrons, 
K long, K short (for fun), photons, pi+, pi-, K+, K-.

III BACKGROUNDS B Simulation
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FIG. 23: Background fluxes per kinetic energy bin, comparing primary IP fluxes ⇥10�12 (green)
with the irreducible background flux (blue) after the (20+5)� passive and active shield. Also shown

are background fluxes ⇥10�4 entering the detector that are rejected by the shield veto (red).

56

(We also have matrices 
conditioned on muons 

so we can study 
correlated production)

CODEX-b/CODEX-β EOI, 1911.00481



17Neutrinos

Geant4 is not helpful here - all neutrinos go through.

CODEX-b/CODEX-β EOI, 1911.00481



18Neutrinos

Geant4 is not helpful here - all neutrinos go through.

Can be a dangerous background from free propagating 
particles scattering off the last few lambda

Canonical example is strange muoproduction of kaons

(the equivalent for Anubis would be neutrinos from rock)

CODEX-b/CODEX-β EOI, 1911.00481



19Neutrinos

Geant4 is not helpful here - all neutrinos go through.

Can be a dangerous background from free propagating 
particles scattering off the last few lambda

Canonical example is strange muoproduction of kaons

Obviously, the interaction cross section is tiny, but there 
are *lots* of them so important to be careful (important 

for AL3X, but not so much for CODEX)

CODEX-b/CODEX-β EOI, 1911.00481



20A last word about secondaries
CODEX-b/CODEX-β EOI, 1911.00481

III BACKGROUNDS B Simulation
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FIG. 24: Neutron (black-blue palette) and K0
L (red-yellow palette) background fluxes with kinetic

energy Ekin > 0.4 GeV versus total Pb shield depth in �Pb, under variation of the shield config-
uration and veto e�ciency, including the charged-neutral correlation veto (top) and without the
charged-neutral correlation veto (bottom). For each value of the total shield depth, the (possibly
multiple) corresponding configurations “Lpre-veto + Lpost-veto” are shown by the adjacent labels in

units of �Pb.

up to 10�2. In the left panel of Fig. 24, the corresponding variation of the neutron (black-

blue palette) and K0
L (red-yellow palette) background fluxes are shown, taking all combi-

nations of Lpre-veto 2 {15, 17, 19, 20}� and Lpost-veto 2 {4, 5, 6}�, as defined in Fig. 21, and

"veto 2 {10�2, 10�3, 10�4, 10�5}.

The simulated background fluxes are generally insensitive to marginal variation in the

58

Flattening out is because of secondaries from the shield. 
(CODEX / AL3X address this with in-shield vetos)



21Full prediction

(Example numbers for CODEX-b, we have the same for CODEX-β and AL3X)
III BACKGROUNDS B Simulation

Particle yields

BG species Net (Eneutral
kin > 0.4 GeV)

Shield veto rejection Shield veto rejection
Net yield

(total) (±/0 correlation)

� 0.54 ± 0.12 (8.06 ± 0.60) ⇥ 104 (2.62 ± 1.03) ⇥ 103 –

n 58.10 ± 4.63 (4.59 ± 0.15) ⇥ 105 (3.45 ± 0.51) ⇥ 104 –

n (> 0.8 GeV) 2.78 ± 0.25 (1.03 ± 0.06) ⇥ 105 (7.45 ± 1.92) ⇥ 103 . 1

n̄ (no cut) (3.24 ± 0.72) ⇥ 10�3 34.40 ± 25.80 (7.44 ± 2.20) ⇥ 10�2 ⌧ 1

K0
L 0.49 ± 0.05 (1.94 ± 0.74) ⇥ 103 55.00 ± 19.30 . 0.1

K0
S (6.33 ± 1.39) ⇥ 10�3 93.90 ± 45.80 0.74 ± 0.19 ⌧ 1

⌫ + ⌫̄ (5.69 ± 0.00) ⇥ 1013 (7.35 ± 0.12) ⇥ 106 (5.69 ± 0.00) ⇥ 1013 –

p± (2.07 ± 0.26) ⇥ 102 (9.24 ± 0.36) ⇥ 105 (9.24 ± 0.36) ⇥ 105 –

e± (4.53 ± 0.02) ⇥ 103 (4.38 ± 0.02) ⇥ 107 (4.38 ± 0.02) ⇥ 107 –

⇡+ 34.70 ± 2.27 (2.96 ± 0.20) ⇥ 105 (2.96 ± 0.20) ⇥ 105 –

⇡� 31.40 ± 2.12 (2.68 ± 0.19) ⇥ 105 (2.68 ± 0.19) ⇥ 105 –

K+ 0.83 ± 0.30 (3.08 ± 1.24) ⇥ 103 (3.08 ± 1.24) ⇥ 103 –

K� 0.23 ± 0.12 (1.12 ± 0.63) ⇥ 103 (1.12 ± 0.63) ⇥ 103 –

µ+ (1.04 ± 0.00) ⇥ 106 (1.04 ± 0.00) ⇥ 1010 (1.04 ± 0.00) ⇥ 1010 –

µ� (8.07 ± 0.01) ⇥ 105 (8.07 ± 0.01) ⇥ 109 (8.07 ± 0.01) ⇥ 109 –

TABLE II: Results from the Geant4 background simulation for (20 + 5)� Pb shield, i.e. with an
active shield veto at 20�, applying a veto e�ciency of "veto = 10�4. For outgoing neutral particles
a kinetic energy cut Ekin > 0.4 GeV was applied as required by minimum tracking requirements,
except for anti-neutrons in order to exclude n̄ + N annihilation processes. We also show the rate
for neutrons with Ekin > 0.8 GeV, required for production of at least two tracks via scattering. For
total luminosity L = 300fb�1, shown are the net background particle yields after traversing the
shield plus veto rejection, including veto correlations between charged particles with Ekin > 0.6 GeV
and neutral particles. Also shown are the corresponding background particle yields entering the
detector subject to the shield veto rejection, both with and without application of charged-neutral
correlation veto (denoted ‘±/0’) in the detector. The final column lists the net background yield

including detector rejection, scattering or decay probabilities.

54

CODEX-b/CODEX-β EOI, 1911.00481



22Full prediction

(Example numbers for CODEX-b, we have the same for CODEX-β and AL3X)

CODEX-b/CODEX-β EOI, 1911.00481

x

'

SM

SM

CODEX-b box

UXA shield

shield veto

IP8Pb shield

DELPHI

3 m concrete (~7λ)      +      4.5 m Pb (20 λ + 5 λ )     =     ~32 λ

Muon veto, after 2/3 of the shield 
10-4 efficiency required



23Validation

We have done a lot of validation of this approach.

• We have two independent implementations of the Geant4 
code as well as the transfer matrix convolution. 

• Where possible, we have checked the numbers against 
published cross sections (e.g. for muons and K longs) 

• There has been an independent implementation of the 
CODEX-b space using the LHCb simulation framework 
(Gauss) which is in reasonable agreement. 

• Background rates have been measured in the CODEX-b 
space and are about a factor of 10 lower than we predict 
(given a few O(1) conservative factors, this seems sensible)



24Anubis back-of-envelope

• Anubis exposure is larger 
than CODEX-b, but let’s 
assume they are similar for a 
moment 

• 10 λ shielding from ATLAS 
HCAL for free 

• Roughly need at least 
another 22 λ → 4 m of Pb

Think about secondaries in the rock



25Conclusions and Outlook

All of the LLP detectors have common challenges.

Our background simulation strategy 
may be useful for others

(W,Pb <-> rock)

Shielding is critical for background free setup



Questions?



27Uncertainties

We throw toys for the transfer matrices which allows us to 
propagate statistical uncertainties (50 toys)

III BACKGROUNDS B Simulation

Particle yields

BG species Net (Eneutral
kin > 0.4 GeV)

Shield veto rejection Shield veto rejection
Net yield

(total) (±/0 correlation)

� 0.54 ± 0.12 (8.06 ± 0.60) ⇥ 104 (2.62 ± 1.03) ⇥ 103 –

n 58.10 ± 4.63 (4.59 ± 0.15) ⇥ 105 (3.45 ± 0.51) ⇥ 104 –

n (> 0.8 GeV) 2.78 ± 0.25 (1.03 ± 0.06) ⇥ 105 (7.45 ± 1.92) ⇥ 103 . 1

n̄ (no cut) (3.24 ± 0.72) ⇥ 10�3 34.40 ± 25.80 (7.44 ± 2.20) ⇥ 10�2 ⌧ 1

K0
L 0.49 ± 0.05 (1.94 ± 0.74) ⇥ 103 55.00 ± 19.30 . 0.1

K0
S (6.33 ± 1.39) ⇥ 10�3 93.90 ± 45.80 0.74 ± 0.19 ⌧ 1

⌫ + ⌫̄ (5.69 ± 0.00) ⇥ 1013 (7.35 ± 0.12) ⇥ 106 (5.69 ± 0.00) ⇥ 1013 –

p± (2.07 ± 0.26) ⇥ 102 (9.24 ± 0.36) ⇥ 105 (9.24 ± 0.36) ⇥ 105 –

e± (4.53 ± 0.02) ⇥ 103 (4.38 ± 0.02) ⇥ 107 (4.38 ± 0.02) ⇥ 107 –

⇡+ 34.70 ± 2.27 (2.96 ± 0.20) ⇥ 105 (2.96 ± 0.20) ⇥ 105 –

⇡� 31.40 ± 2.12 (2.68 ± 0.19) ⇥ 105 (2.68 ± 0.19) ⇥ 105 –

K+ 0.83 ± 0.30 (3.08 ± 1.24) ⇥ 103 (3.08 ± 1.24) ⇥ 103 –

K� 0.23 ± 0.12 (1.12 ± 0.63) ⇥ 103 (1.12 ± 0.63) ⇥ 103 –

µ+ (1.04 ± 0.00) ⇥ 106 (1.04 ± 0.00) ⇥ 1010 (1.04 ± 0.00) ⇥ 1010 –

µ� (8.07 ± 0.01) ⇥ 105 (8.07 ± 0.01) ⇥ 109 (8.07 ± 0.01) ⇥ 109 –

TABLE II: Results from the Geant4 background simulation for (20 + 5)� Pb shield, i.e. with an
active shield veto at 20�, applying a veto e�ciency of "veto = 10�4. For outgoing neutral particles
a kinetic energy cut Ekin > 0.4 GeV was applied as required by minimum tracking requirements,
except for anti-neutrons in order to exclude n̄ + N annihilation processes. We also show the rate
for neutrons with Ekin > 0.8 GeV, required for production of at least two tracks via scattering. For
total luminosity L = 300fb�1, shown are the net background particle yields after traversing the
shield plus veto rejection, including veto correlations between charged particles with Ekin > 0.6 GeV
and neutral particles. Also shown are the corresponding background particle yields entering the
detector subject to the shield veto rejection, both with and without application of charged-neutral
correlation veto (denoted ‘±/0’) in the detector. The final column lists the net background yield

including detector rejection, scattering or decay probabilities.
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