Dark Matter Hunting in 2021

How do you look for
something when you don’t
know what it is?

Malcolm Fairbairn

Planck 2021
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There is 6 times as much dark matter as normal matter.




No dark matter has been detected yet!

What can we find out about it without interacting with it directly?



Things we can try to find out about dark matter

How heavy is the
dark matter?
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How warm/cold is

the dark matter? anuufensunnuntanna [Sthedark matter

. fermionic?

Does the dark matter
interact with us?

Does the dark matter
interact with itself?

These questions are very often related to each other



Things we can try to find out about dark matter

How heavy is the
dark matter?

How warm/cold is
the dark matter?



Planet Escape Velocities
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Milky Way Escape velocity

~500km /s

We know dark matter must be
travelling less quickly than this, since
we know it is present in galaxies like
the Milky Way
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Dwarf Galaxy Escape velocity

Dark Matter is also present in Dwarf
galaxies, so we know it is moving at
least this slow.




How Quickly was Dark Matter moving in the Early Universe?

e Ay
£ p . il .
. STE &

Slow moving dark matter

(computer simulations)

Fast moving dark matter

Different initial dark matter velocities lead to different amounts of substructure.




WDM Halo Mass Function @z=10
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Small Subhalos can perturb stellar streams

=9 Sm;f g |

See work by Bovy, Erkal, Sanders etc
+ Bertone for possible preliminary results
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dec [pixels]

Source with varying x-y
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Minimum halo mass 10° Msun

Can you tell the difference? | can't...

Minimum halo mass 10° Msun

-
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We generate lots of lensed images of galaxies.

(s

Sreedevi Varma

We then use Machine Learning to see if we can tell how small the
subhalos are from the shapes of the lensing images. We can!
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Results of the best chain seems
to show we can get within half an
order of magnitude to a close
approximation!

We need to prove that we can do
this under more variation and
while baryons are present...

This is not as easy.

2005.05353

BB CNN1 Em CNN1
| CNN2 B CNN2

B VGG-like 1 mm VGG-like

I ResNet-like B ResNet-like

1M, WIN, 1OW,

0'm, . 1000, o' M, WM, 10894, wN, 107, 10°N, 10%'M, 10°M,
subhalo mass range Lower bound of subhalo mass range

Predicted Results ResNet-like CNN

L 100°M, 10N,
Lower bound of

10°M,
106.5Mo
7 B wn
10'Mo 0.6 %
E
107Mq 8
-0.4 S
®
10%M, i

IOB'SMO

10°M,

10°M, 10%°M, 10’Mg 107°Mg 108M, 10%°M, 10°M,



Things we can try to find out about dark matter

How heavy is the
dark matter?

L
O..

How warm/cold is
the dark matter?

Is the dark matter
fermionic?



Light Fermionic dark Matter

can we get a constraint from the Pauli exclusion principle?

Original bound from Gunn and Tremaine in 1979 used galaxies
to place a constraint on the mass of dark matter.
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New Constraints on the Mass of Fermionic Dark Matter from Dwarf Spheroidal
Galaxies James Alvey, Nashwan Sabti, Victoria Tiki, Diego Blas, Kyrylo Bondarenko,
Alexey Boyarsky, Miguel Escudero, Malcolm Fairbairn, Matthew Orkney and Justin |.
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OBSERVING THE DM DENSITY AND VELOCITY DISPERSION
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Leads to famous “beta-degeneracy” e.g. Wolf et al 2009.
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What if we include Kurtosis of (+) Leptokurtic
LOS velocities?

General
Forms of

Kurtosis

(0} Mesokurtic
{(Normal)

Merrifield and Kent 1990

Fairbairn and Richardson
2014

{-} Platykurtic

* Introduce virial shape parameters:
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VSP2 = f 2(vios)R3dR = 3c f v(7 — 68)0?GMR3dR
0 0

We marginalise over £ using priors from simulations



Density (Mg kpe™) Density (Mg kpe™)

Density (Mg kpe™)

Can break degeneracies and obtain good density
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Constraint on resonantly produced Sterile neutrino models
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Things we can try to find out about dark matter

How heavy is the
dark matter?

Does the dark matter
interact with us?

These questions are very often related to each other



Too light dark matter
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If it is sufficiently light it will affect
Big Bang Nucleosynthesis

\

If the dark matter is too light, it can change
the prediction for how much helium and
e —> 4HE deuterium is left behind after the big bang...
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Light Dark Matter changes Evolution of photon and neutrino temperature
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“If | have seen further, it is by stealing other
people’s code off Github”
— Isaac Newton 1675.

NUDEC_BSM: Neutrino Decoupling
Beyond the Standard Model

This code "NUDEC_BSM", has been developed by Miguel Escudero Abenza
in order to solve for early Universe thermodynamics and neutrino
decoupling following the simplified approach of ArXiv:1812.05605 [JCAP
1902 (2019) 007] and ArXiv:2001.04466 [JCAP 05 (2020) 048]. If you use this
code, please, cite these references.

Precision Big Bang Nucleosynthesis with the New Code
PRIMAT

Cyril Prrrou'?, Alain Coc?, Jean—Philippe Uzan'? and Elisabeth Vangiont

1,2



Use state-of-the-art Big Bang Nucleosynthesis code PRIMAT
arXiv:1909.12046

accurate predictions for He & D and deuterium abundances
up-to-date nuclear reaction rates

finite temperature corrections

incomplete neutrino decoupling etc.

Also use state of the art code “nudec” developed by Miguel Escudero in
order to solve for early Universe thermodynamics and neutrino decoupling
https://github.com/MiguelEA/nudec_ BSM
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Things we can try to find out about dark matter

How heavy is the
dark matter?
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Does the dark matter
interact with us?



u > u Possible observation of
B Wt _ KT Lepton Universality Violation

’ a2t/ ° at LHCb
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u B u Possible observation of
By Wt _[KT  Lepton Universality Violation
/ ‘w B at LHCb
7/2° a o BR(B — Kutu™)
- X7 BR(B — Kete)
One can solve this by : - : BaBar
introducing Z’ mediators | 0.1<q”<8.12 GeV"
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Different data analyses lead to Og = (S’YN«PLb)( Y )
constraints on operators:- O/ito (S'YuPLb)( ’Y“’YSN)
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. Y, =37, . 1704.03850
[ i 1705.03447
O 0.5k - 1807.02503
; 1 with
4 John Ellis &
- Patrick Tunney

ot

» Simplest, best fitting anomaly free models have dark matter particles with
vector couplings to the mediating Z’' - probably ruled out by direct
detection.

* More complicated models can have dark matter with axial coupling but EW
precision variables need to be carefully studied...

WORK IN PROGRESS......



Things we can try to find out about dark matter

How heavy is the
dark matter?

Does the dark matter
interact with us?

These questions are very often related to each other



Events/(t-y-keV)

June 2020, a new result from electron recoils from
XENONA1T collaboration arXiv: 2006.09721

100} l] l [ :
80/ T NERE
60 | ] H]H HIIH | III
a0f I :
22_ f i i ! T ]SSIEU data_

Energy [keV]

The signal has an excess over the background.
This could be due to new physics, but it also could
be due to Tritium or Argon.



Axion production in the Sun
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Events/(t-y-keV)

Solar axion interpretation
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Favoured Axion Parameters to fit the excess
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Stellar evolution

Helium core

.‘ Hydrogen shell fusion

Hydrogen shell
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Thomas Kallinger, University of British Columbia and University of Vienna




Messier 5 from
Central London
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We showed that the fit to the Xenon1T excess could be improved by various
mediators between neutrinos and electrons, but this also faces difficult
astrophysical constraints. arXiv:2006.11250
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Constraints from SN1987A

For a massive scalar S or pseudoscalar .J, the renormalizable couplings to neutrinos can be
generally denoted by

1

= 59058 (l/g:iagl/g) . Y %Q;BJ (1/50‘21/3) + h.c. (2.1)
0
) |

-4
S

= -6
2

-8

Heurtier & Zhang
~10 1609.05882

6 -5 -4 -3 -2 -1 0 1 2 3
log,glms/MeV]

Can also affect propagation of neutrinos from 1987a



On the other side, the coupling between electrons and vectors is
also tightly constrained...

1073
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105}
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Hardy and Lasenby, 1611.05852



e Solar axions can’t explain the excess,
because of astrophysical constraints

* This is probably also true for neutrinos with
non standard interactions

* Important point is that dark matter detectors
are able to probe some aspects of the
neutrino sector with precision comparable
or better to some neutrino detectors!



top sensor array
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Things we can try to find out about dark matter

Does the dark matter
interact with us?

Does the dark matter
interact with itself?

These questions are very often related to each other



THE SEARCH FOR GRAVITY WAVES

L Lf.;ra,vitation is one of the universe’s basic forces. It gives weight to objects with mass.

According to Isaac Newton, the force by which gravity attracts two bodies is proportional
to their mass. However, in 1915 Albert Einstein suggested a different explanation.

The effects of gravitation occurred because bodies with mass bend the fabric of space,
known as space-time, so that free-falling objects find their paths curved or deflected

Gravity

Gravity is the effect of the bending of the fabric of space-time by matter,
shown here, vastly exaggerated mapped on a two-dimensional plane

Gravitational Waves are now
mainstream —

This infographic is from the UK
Observer newspaper

Einstein's theory

In his theory of general relativity, Einstein argued that the motion of an object would cause ripples
to emanate though the curvature of space-time. These fluctuations are known as gravitational
waves, shown here radiating from a binary star system - two ultra-dense neutron stars that are
spiralling closer and closer to each other

( ! ? Binary star system

-+

;Gravitatiunal waves

The technology now exists to measure gravitational waves and the results
are expected to prove that Einstein’s theory is correct

Everything couples to Gravity!

Q. If we observe phase transitions using
gravitational waves, how will we know
whether they come from our sector or
some dark sector?




Hearing without seeing:
Gravitational Waves from Hot and Cold Hidden Sectors
1901.11038

An example hidden sector
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Cold hidden sectors

The two types of transition
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Cold hidden sectors

The two types of transition

SS 372
Thermal phase transition Fg ~ Tﬁl (2 T ) 6—53/Th
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Both temperature dependant



Thermal phase transition
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The two types of transition: concrete example

Optimal point for thermal transition
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Tunnelling phase transition
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The two types of transition: concrete example

Tunnelling nucleation rate stays
constant
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Bubble wall dynamics

The wall velocity

Friction set by Tyiq4en

Friction determines wall
velocity at collision

Controls shape of GW
spectrum (fraction in sound
waves vs shock waves)



Ratio of temperatures between dark and visible sector

dark sector might have different temperature for a few reasons:-

« Large number of BSM degrees of freedom in visible sector
 Different reheating after inflation into visible and hidden sector

« String theory moduli decay preferentially into one sector rather than other
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Phase transitions
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Phase transitions

Case 2: ¢ = Lhidden . |
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Gravitational Wave Spectrum

here visible temperature at transition is around TeV
Hidden sector temperature different
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« We investigated how to distinguish between hidden and visible sector
phase transitions

» Cold hidden sector could give rise to the same peak frequency as hot
visible sector but with different spectrum




The ongoing Search for Dark Matter

» We are well into an era of using novel approaches to learn more
about dark matter

» Astrophysical and Cosmological probes will continue to yield
important information about substructure

« Anomalies at collider and direct detection experiments may one day
stick and tell us something

» Gravitational Wave observations offer new perspectives on the
problem

» Dark Matter is here to stay. We need more information about the
dark stuff... Whatever itis orisn't...
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