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Upshot

● To do this we had to rethink some of the basic tenets of the S-matrix 
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● We solved the 40+ year old problem of finding a consistent S-matrix for monopoles & 
charges  

● We fixed all 3-pt amplitudes and wrote the most generic 2->2 scattering amplitude

● Our formalism utilizes only symmetry not dynamics



Monopoles:
On-Shell Success Where Lagrangian Field Theory Fails
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Magnetic Monopoles
Sources of U(1) field with non-trivial winding number
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● At  r>>m-1 effectively abelian  Dirac ‘31

We won’t care.
For us they are just scattering particles

● Lead to charge quantization  Dirac ‘31,  Wu & Yang ‘76

● At  r~m-1 have non-abelian cores   ‘t Hooft / Polyakov ‘74



The Completeness Conjecture
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● In any theoretical framework that requires charge to be quantized, there will exist 
magnetic monopoles

“... the existence of magnetic monopoles seems like one
of the safest bets that one can make about physics not yet seen.”

Polchinski ‘03

● In any fully unified theory, for every gauge field there will exist electric and magnetic 
sources with the minimum relative Dirac quantum

Polchinski ‘03

Completeness conjectureNo global symmetries in gravity conjecture

Palti ‘19  (see also Banks Seiberg ‘11)



Monopoles: Where “No” Lagrangian Exists

● Since the days of Dirac, no clear way to write a local, Lorentz invariant Lagrangian for 

abelian monopoles & electric charges 

○ Schwinger approach:  non-local Lagrangian Schwinger ‘66

○ Zwanziger approach:  local Lagrangian, Zwanziger ‘71

loss of manifest Lorentz by introducing Dirac string
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● The S-matrix for charge-monopole scattering is local and Lorentz invariant up to a phase,

but the local Lagrangian is Lorentz-violating



An On-Shell Opportunity

● The S-matrix has to be “special” in some way, otherwise why no local, Lorentz invariant 
Lagrangian?

● Dirac quantization should play a leading role

○ q ≡ e g  is half integer. Other half integers for the S-matrix?  - Spins and helicities!   

○ Helcities & spins are associated with 1 particle states  

○ q ≡ e g associated with charge-monopole pairs 

“pairwise”  helicity?

7



Charge - Monopole Scattering:
A Non-Relativistic Prelude
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    Thomson 1904

In the quantum theory            quantized  Dirac quantization

Distance independent!

monopole M particle f
magnetic charge g electric charge e
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Monopole and Charge: Extra Classical Angular Momentum

Saha 1936



   Boulware 1976
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Classical NR Charge-Monopole Scattering

Conserved angular momentum:

motion on a cone

Scattering angle vs. “cone angle”:

peaks at 1,2, 3… windings around the cone

Schwinger 1976

charge

monopole

π-θ

π-2
ξ

θ

ξ=-sin-1(eg)

winding = non-perturbative effect



   Boulware 1976
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Classical NR Charge-Monopole Scattering

charge

monopole

π-θ

π-2
ξ

θ

ξ=-sin-1(eg)

Take home: constants of motion deformed by long range EM interaction

angle of “hard” scattering (hitting the tip) constrained by “soft” cone 

Schwinger 1976



( en , gn )

The S-Matrix for
Charges, Monopoles and Dyons 

( e’
1 , g’

1 ) ( e’
m , g’
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The Problem
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● Want to scatter quantum charges and monopoles

● The quantum charges and monopoles source a classical EM field

● The classical EM field deforms the definition of the quantum 
angular momentum operator

● How can we write a consistent S-matrix?

g g g g g g g g

e e e e
e e e e

S. Weinberg, The Quantum Theory of Fields Vol. 1



Idea: Re-Define the Hilbert Space

14

● We re-define the asymptotic multiparticle states of the S-matrix to include  JEM

● The new multiparticle are by definition not tensor products of single particles

● We derive the modified transformation rule for the electric-magnetic S-matrix

● We then use it to construct amplitudes for monopoles



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

derive



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

“Pairwise momenta”

“Pairwise spinors”
Standard spinor-
helicity variables

saturatederive



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

“Pairwise momenta”

“Pairwise spinors”
Standard spinor-
helicity variables

saturatederive

Fix amplitudes up to LG
invariants

All magnetic
3pt amplitudes

Quantum fermion-
monopole scattering

All-PM* scalar-
monopole scattering

* All orders in (q/J)



Talk Flowchart
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Electric-magnetic 
multiparticle states



Defining Relativistic Quantum States                         Wigner ‘37,
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● Relativistic Quantum states are defined via their irreducible representations under Poincaré 

Little group (LG)= compact subgroup of Lorentz which leaves a reference momentum invariant

little group SU(2),  particles labeled by spinMassive irreps. :

little group U(1)*,  particles labeled by helicityMassless irreps. :

induced from
Lorentz irrep. Little group irrep.

● Mutiparticle states?      Usually tensor products of single particle states

Bargmann & Wigner ‘48



The Quantum State of Scalar Monopole & Charge Zwanziger ‘72

20

● How does Lorentz act on a  2-particle state with a scalar monopole and a scalar charge? 

○ Naively, because they are scalars:

can’t be true because that implies no  q12 ≡ e1 g2 - e2 g1  contribution to the angular momentum

○ Instead:

where φ is a pairwise little group phase associated with both momenta



Wigner’s Method for Scalar Charge-Monopole States Zwanziger ‘72
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Reference momenta in COM frame:

○ Always just a U(1) - rotations around the z-axis

Pairwise Little Group (LG) - All Lorentz transformations which leave both k1,2 invariant

○ Charge-monopole pairs labeled by their pairwise LG charge q12
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● Define canonical Lorentz transformation  Lp  as the  COM  ￫  Lab  transformation 

● Wigner’s trick:

Zwanziger ‘72Wigner’s Method for Scalar Charge-Monopole States

Pairwise LG rotation

where                                         . This is the electric-magnetic two scalar state
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● We can easily generalize the two scalar state to any electric-magnetic multiparticle states 

Electric-Magnetic Multiparticle States

               are the matrices (phases) for each single particle massive (massless)  LG  

Spins / helicities Pairwise helicitiesPairwise LG

● Electric-magnetic multiparticle states are not direct products of single particle states!

hep-th/2010.13794

Single particle LG



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

✓
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● To define the S-matrix,  we define electric-magnetic in- and out- states as

The Electric-Magnetic S-Matrix

+ for ‘in’
- for ‘out’

where                                           .

● Has to be there to reproduce the angular momentum in the E&M field in the classical limit  

● The  ±  for the pairwise LG phase of the in / out state is very important! 



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

derive

✓

✓
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● The S-matrix then transforms as:

The Electric-Magnetic S-Matrix

with 

● The extra pairwise LG phase is the key element in our formalism

● Every electric-magnetic S-matrix must transform with this phase by construction! 



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

Standard spinor-
helicity variables

derive

✓

✓

✓
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The Standard Spinor-Helicity Formalism

Standard definition: spinor helicity variables transform covariantly

under the single particle LGs

De Causmaecker et al. ‘82
                 Parke, Taylor ‘86
                                          ….
     Arkani-Hamed at al. ‘17

Lorentz trans.

Massless:

LG phase

Massive:

Lorentz trans. LG phase

Lorentz trans. LG SU(2) Lorentz trans. LG SU(2)
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Building Amplitudes - Like Playing ``Little Group Sudoku”

No monopole example:   1-massive vector, 2-massive scalar, 3-massless vector with helicity -1

particle 1
SU(2) rot.

particle 3
U(1) rot.

● Need two                              , each one spin-½,  to reproduce the spin-1   

● Need two                              , each one helicity -½,  to reproduce the   

● All spinor indices must be contracted!  
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Magnetic Amplitudes - Need Extra Building Blocks!

Monopole example:   1-massive vector, 2-massive scalar, 3-massless vector with helicity -1

particle 1
SU(2) rot.

particle 3
U(1) rot.

● How can we account for the pairwise phase?  Need a new kind of spinors!

2 has electric charge e,   3 has magnetic charge g,   q23=eg=2

particles 2&3
pairwise rot.
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Need New Building Blocks for the S-Matrix: Pairwise Spinors

Need a new kind of spinors             transforming with a pairwise phase, i.e.

● The spinor            should be associated with  both  pi and pj

● It should have a  U(1)  phase even though particles i and j can be massive

● The U(1)  phase has to be the same as the one in the transformation of the S-matrix



Talk Flowchart
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“Little group” transformation 
of S-matrix
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helicity variables
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✓

✓
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Definition: Pairwise Momenta

Null linear 
combinations;

“pairwise 
momenta”

In the COM frame of particles i and j:

In this frame the pairwise momenta are null vectors with the same spatial parts as pi , pj



Talk Flowchart
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Definition: Pairwise Spinors

In the COM frame of particles i and j,  we define  the pairwise spinors                          so that

Explicitly:

This mirrors the definition of regular spinor-helicity variables, only with pairwise momenta 

In other reference frames? Perform a Lorentz boost!
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Pairwise Momenta & Spinors:  Boosting Away from the COM Frame

Remember the canonical Lorentz boost from the quantum states?

By linearity, we also have

And also the spinor version
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Pairwise Spinors: LG Transformation

● By another “Wigner trick” we get 

Same pairwise phase as the quantum states  (Because the canonical boost is the same)

● Now we can use them as building blocks for electric-magnetic amplitudes!



Talk Flowchart
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✓
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Constructing Electric-Magnetic Amplitudes

● We showed that the electric-magnetic S-matrix transforms as

● To fix amplitudes up to LG invariants, we play “little group Sudoku” with 

an additional pairwise phase and pairwise spinors

● Our results are fully non-perturbative, as we never rely on a perturbative expansion
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1st Surprise: Technically, No Forward Scattering!

Remember the beginning of every QFT textbook?



42

1st Surprise: Technically, No Forward Scattering!

Remember the beginning of every QFT textbook?

doesn’t transform with the pairwise LG phase!

● Forward scattering always involves the in-state incurring an (unphysical) phase

● This unphysical phase encodes the “Dirac string” dependence

● In certain case, forward scattering completely forbidden (fermion-monopole)



Talk Flowchart
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Electric-magnetic 
multiparticle states

In/out states of S-matrix

“Little group” transformation 
of S-matrix

“Pairwise momenta”

“Pairwise spinors”
Standard spinor-
helicity variables
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Fix amplitudes up to LG
invariants✓
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✓

✓

✓

✓

✓



Results 

Spherical Harmonics Monopole - Spherical Harmonics



Talk Flowchart
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Electric-magnetic 
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In/out states of S-matrix
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✓
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All 3-pt Electric-Magnetic Amplitudes

● Pairwise LG + individual LGs allow us to classify all 3-pt amplitudes

● This generalizes the massive amplitude formalism by Arkani-Hamed at al. ‘17

● Our amplitudes & selection rules reduce to theirs for q = 0  
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Example 3-Massive Electric-Magnetic Amplitudes

(e1 , g1)

(e3 , g3)

(e2 , g2)
● To saturate the individual SU(2)  LG for each particle, need

s1

s2

s3

q23 ≡ e2 g3 - e3 g2

● In the q=0 case, contracted with a bunch of pairwise LG inert 

● In the our case, contracted with a bunch of                with overall pairwise LG weight -q23
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Example 3-Massive Electric-Magnetic Amplitudes

● Unique result with correct pairwise LG weight:

ŝ±q non-negative integers Selection rule: 

In particular a massive scalar dyon cannot decay to two massive scalar dyons 

(Unless all 3 are dual to electric charges simultaneously)
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All 3-pt Electric-Magnetic Amplitudes

Incoming massive particle
two outgoing massive particles

AmplitudeKinematics Selection Rule

Incoming massive particle, 
outgoing massive particle + 
massless particle, unequal mass

Incoming massive particle, 
outgoing massive particle + 
massless particle, equal mass

none

Incoming massive particle, two 
outgoing massless particles



Talk Flowchart
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Electric-magnetic 
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✓
✓
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Fermion-Monopole Scattering: Solving a 45-year Mystery

In 1977 Kazama, Yang and Goldhaber considered the quantum scattering of a fermion

in the field of a static monopole, by solving the Dirac equation in its background.

They found several counterintuitive results which we can now explain
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Fermion-Monopole Scattering: NRQM Result

1. The partial wave decomposition doesn’t start at    J=0,   but at   J=|q|-½  with q=eg
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2. The angular wavefunctions are not Ylm but are actually qYlm - monopole spherical harmonics

Spherical 
Harmonics

Monopole - Spherical 
Harmonics

Fermion-Monopole Scattering: NRQM Result
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3. At the lowest partial wave, the fermion helicity must flip

eL

Fermion-Monopole Scattering: NRQM Result
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eL

eR

Fermion-Monopole Scattering: NRQM Result

3. At the lowest partial wave, the fermion helicity must flip
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Fermion-Monopole Scattering: Our Method
● Most general partial wave with the right pairwise helicity:

f M

f ’ M’

Massive spinor for incoming fermion

Massive spinor for incoming fermion

2J spinor indices contracted between 
in- and out- state for J partial wave

Right amount of pairwise spinors for 

overall pairwise helicity q
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Fermion-Monopole Scattering: Our Method

f M

f ’ M’

● Substituting the explicit values & contracting spinors symmetrically,

Wigner D-matrix

Euler rotation between in and out directions
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The Fermion-Monopole “Jacob-Wick” Formula

f M

f ’ M’

● This equation has nearly* all of the NRQM result hidden in it!

1. The Wigner D-matrix vanishes unless ✓
2. Wigner D-matrices are equivalent to a monopole spherical harmonics ✓

* The numbers aσaσ’= eiδ(J) are phase shifts, extrapolated from NRQM
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The Fermion-Monopole “Jacob-Wick” Formula

f M

f ’ M’

● This equation has nearly* all of the NRQM result hidden in it!

3. At the lowest  J=|q|-½, the D-matrix vanishes unless

✓

○ For q<0 :     σ=σ’=+                    RH f      going to     LH f ’         

○ For q>0 :     σ=σ’=-                     LH f      going to     RH f ’         

Helicity flip emerges from pairwise LG selection rule

Converting from the
“All outgoing” convention



Talk Flowchart
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✓

✓

* All orders in (q/J)



Conclusions
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● Identified electric-magnetic multiparticle states that are not direct products

● Defined the pairwise LG, helicity and spinor-helicity variables

● Fixed all 3-pt amplitudes 

● Fixed all angular dependence of 2⇾2 scattering and reproduced lowest PW helicity-flip

● Solved the problem of constructing Lorentz covariant electric-magnetic amplitudes



Future Directions
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● Supersymmetrize!   Decay of ¼-BPS dyons in N=4 SYM,   walls of marginal stability in N=2 ?

● Massless mutually non-local particles:   what’s the S-matrix at an Argyres-Douglas point?

● Higher dimensions:  D-brane magnetic scattering

● The quantum dyon - Taub-NUT double copy:   out soon!

● On-shell derivation of the Rubakov-Callan effect

● Generalization to celestial amplitudes Lippstreu ‘21



Thank You!
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