

Flavour Anomalies — Hints for BSM physics in expected and unexpected places

Danny van Dyk

Technische Universität München

Planck 2021 June 29th, 2021

Overview

Contents

- this is not a comprehensive discussion of the flavour anomalies (substantial tensions shy of 5σ individually)
 - aiming for an overview of a (subjective) selection of flavour anomalies
 - ▶ off the menu: $(g-2)_{\mu}$, Cabibbo anomaly, ...
 - provide an idea of current status of and complexity behind the flavour anomalies
- concentrating on longstanding b anomalies

 $b \rightarrow c \tau^- \overline{\nu}$ driven by BaBar '12 & LHCb '15&'18 measurements $b \rightarrow s \mu^+ \mu^-$ driven by LHCb '13...'21 analyses (& consistent with ATLAS, Belle, CMS)

- ▶ more in-depth discussions Wednesday afternoon
 - ► *B* anomalies at LHCb M. Patel
 - Belle (II) status and prospects
 - $(g-2)_{\mu}$
 - BSM interpretation

Th. Kuhr A. Schreckenberger M. Blanke

- \blacktriangleright theory predictions for b decays require an elaborate framework
- multiscale problem: m_t , m_W , m_b , Λ_{had}
- divide and conquer
 - ► introduce weak effective theory (WET) to separate m_t , m_W from other scales m_b , Λ_{had}
 - use renormalization group equations to understand WET at low scale $\simeq m_b$
 - ► compute hadronic matrix elements
 - ► from lattice QCD (if possible)
 - in power expansion of $\Lambda_{
 m had}/m_b$ using HQET & SCET
 - ► in QCD sum rules

Framework — Weak Effective Theory

▶ removes *W* and *t*, *Z* fields

Framework — Weak Effective Theory

- low-energy description of the SM and BSM models
- ▶ removes *W* and *t*, *Z* fields

- introduces dim-6 effective operators
 - dim-8 surpressed by $m_b^2/m_W^2 \sim 0.4\%$

$$\mathcal{L}^{\text{eff}} = \sum_{i} \mathcal{C}_{i} \times [\bar{s} \Gamma_{i} b] \times [\bar{\ell} \tilde{\Gamma}_{i} \nu] + \sum_{j} \mathcal{C}_{j} \times [\bar{s} \Gamma_{j} b] \times [\bar{\ell} \tilde{\Gamma}_{j} \ell]$$

$b \to c \tau^- \overline{\nu}$

- ► 10 operators per lepton flavour
- reduces to 5 if left-handed neutrinos assumed
 - very manageable in fits

$b \to s \mu^+ \mu^-$

- ▶ 10 $b \rightarrow s\ell\ell$ operators per lepton flavour
- additional operators required for consistent descr. at O(α_e)
- ► $b \to s\{\gamma, g, \overline{q}q\}$ can all contribute to $b \to s\ell^+\ell^-$ processes
 - $b \rightarrow s \overline{q} q$ operators are presently not varied in $b \rightarrow s \mu^+ \mu^-$ fits

To probe BSM physics, we need accurate knowledge of SM contributions!

$b \to c \tau^- \overline{\nu}$

- matching at tree-level
- only one non-zero coefficient
- no QCD-induced scale evolution
- e.m. radiative corrections
 under control [A. Sirlin '90]

 $b \to s \mu^+ \mu^-$

matching starts at one-loop

[Adel,Yao hep-ph/9308349]

- QCD-induced scale dependence
- NNLO QCD matching

[Greub et al. hep-ph/9703349]

[Bobeth et al. hep-ph/9910220]

► partial NNLL evolution

[Chetyrkin et al. hep-ph/9612313] [Bobeth et al. hep-ph/0312090] [Gorbahn,Haisch hep-ph/0411071]

[Gorbahn et al. hep-ph/0504194]

Framework — Hadronic Matrixelements

- \blacktriangleright working dominantly to leading order in α_e
- \Rightarrow matrix elements of semileptonic operators factorize
 - hadronic matrix elements are discussed in terms of scalar-valued hadronic form factors

 $b \to c \tau^- \overline{\nu} \& b \to s \mu^+ \mu^-$

- number of indep. form factors depends on hadrons involved
- ► 3 for $P \to P\ell\ell'$ e.g. $\overline{B} \to D\tau^-\overline{\nu}$ or $B \to K\mu^+\mu^-$
- ► 7 for $P \to V\ell\ell'$ e.g. $\overline{B} \to D^* \tau^- \overline{\nu}$ or $B \to K^* \mu^+ \mu^-$
- $\blacktriangleright \geq 10$ for baryonic processes

 $b \rightarrow s \mu^+ \mu^-$ only

- ► non-local contributions pollute local $b \rightarrow s\mu^+\mu^$ interactions
- ► dominant: intermediate on-shell vector c̄c

$$b \to c \tau^- \overline{\mu}$$

Anomaly in Plots

Test of Lepton-Flavour Universality (LFU)

[HFLAV 1909.12524]

why is the SM prediction so precise?

- heavy-quark expansion very effective if both quark flavours b and c are heavy [Isgur,Wise '89]
- ► simultaneous expansion in α_s up to NLO and $\Lambda_{had}/m_{b,c}$ up to 2nd power [Falk,Neubert hep-ph/9209268 & hep-ph/9209269]
- ▶ precice lattice QCD results for $\overline{B}_{(s)} \rightarrow D_{(s)}$ form factors in large parts of phase space [FNAL/MILC 1503.07237; HPQCD 1505.03925]
- ► first lattice QCD results for $\overline{B}_{(s)} \rightarrow D_{(s)}$ form factor [HPQCD 2105.11433; FNAL/MILC 2105.14019]
- consistent picture of all theory inputs to NLO & 2nd power

[Bordone et al. 1908.09398 & 1912.09335]

global fit to $b \to c \tau^- \overline{\nu}$ data

- measurements
 - ► *R*_D, *R*_{D*}
 - ► *D*^{*} polarisation (optional)
- ► assumptions:
 - $\Gamma(B_c^- \to \tau^- \overline{\nu}) / \Gamma(B_c^-) < X\%$
 - semi-tau. width cannot dominate $\Gamma(B_c^-)$ [Alonso et al. 1611.06676]
 - no r.h. b → c vector current, since it is lepton-flavour universal

[Cata,Jung 1505.05804]

- global fits need updating, due to new measurements and predictions
 - $R_{J/\psi}$ from semileptonic B_c decays
- ► LHCb is working hard on new measurements
 - R_D / combined $R_D \& R_{D^*}$ measurements
 - R_{Λ_c} will test complementary WET constraints [Böer et al. 1907.12554]
- ► Belle II in excellent position to contribute in near future
- ► a lot of work before LFU violation can be claimed!
 - anomalies tend to vanish
 - theory under good control; need more measurements!

$$b \rightarrow s \mu^+ \mu^-$$

_

Anomalies in Plots

- ► SM predictions ~ 1 if $1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$
- ► LHCb meas. consistently below, with $\geq 3 \sigma$ tensions in R_K see talk by M. Patel

$$R_X \equiv \frac{\langle \mathcal{B}(B \to X\mu^+\mu^-) \rangle_{1,6}}{\langle \mathcal{B}(B \to Xe^+e^-) \rangle_{1,6}}$$

Anomalies in Plots

$$\left< \mathcal{B}(B \to X \mu^+ \mu^-) \right>_{1,6}$$

- ► SM predictions ~ 1 if $1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$
- ► LHCb meas. consistently below, with $\geq 3 \sigma$ tensions in R_K see talk by M. Patel
- larger th. uncertainties for ${\cal B}$
- ► muonic *B* systematically below SM pred.

Anomalies in Plots

- ► SM predictions ~ 1 if $1 \text{ GeV}^2 \le q^2 = m_{\ell\ell}^2 \le 6 \text{ GeV}^2$
- ► LHCb meas. consistently below, with $\geq 3 \sigma$ tensions in R_K see talk by M. Patel
- larger th. uncertainties for ${\cal B}$
- ► muonic *B* systematically below SM pred.
- ► angular observables compared in bins of q²
- deviations significant and consistent with R_X , \mathcal{B}

- \blacktriangleright to LO in $\alpha_{e},$ SM prediction differs from 1 only due to $4m_{\mu}^{2}/q^{2}$ factors
 - various groups agree on predictions
- radiative corrections
 - semi-analytic calculation of integrated R_K agree with
 PHOTOS-based simulation [Bordone,Isidori,Pattori 1605.07633]
 - double-differential distribution can suffer from large correction, requires more careful treatment compatible with current best practice [Isidori,Nabeebaccus,Zwicky 2009.00929]
 - no structure-dependent studies yet for rare semileptonic decays, but important insights gained from QED factorization studies for $B \rightarrow K\pi$ decays [Beneke,Bobeth,Szafron 1908.07011]

[Beneke,Böer,Toelstede,Vos 2008.10615]

► large uncertaintes, since form factors contribute fully!

- ▶ largest deviations seen at small values of $1 \,\mathrm{GeV}^2 \leq q^2 \leq 6 \,\mathrm{GeV}^2$
 - current lattice QCD results limited to $q^2\gtrsim 12\,{\rm GeV}^2$
 - current th. predictions dominated by QCD light-cone sum rules (large uncertainties)
- $\blacktriangleright\,$ first attempt to account for finite width in $K^* \to K^{\pi}$

[Descotes-Genon 1908.02267]

- SM prediction grows by $\sim 20\%$, increasing tensions
- ▶ effect cancels in ratios (LFU, ang. obs.)

- normalization cancels hadronic form factors partially
 - theory correlations indispensable
 - ► using lattice QCD info if available, heavy-quark expansion if not
- ► major task: disentangle non-local contributions from WET coefficients C₇ & C₉
- non-local effects: using pertubative QCD at time-like momentum transfer below narrow charmonium resonances
 - a-posteriori tests seem to indicate that non-local effects are not driving the anomalies

- ► consistent interpretation, with scenario dependent tensions
- tension $> 5 \sigma$ for all-operator fits to all data
- tension $\geq 4 \sigma$ for fits to "clean" subset of data

how to determine the significance?

[Lancierini et al. 2104.05631]

- fitting a few-operator scenario is not a suitable way to establish significance of a tension
 - not invariant under reparametrization
- ► accounting for all operators similar to Look-Elsewhere Effect

[Lancierini et al. 2104.05631]

 recent conservative analysis yields global significance of 3.9 σ, despite large "trial factors"

[Altmannshofer,Stangl 2103.13370]

- several groups investigate both LFU and LFUV contrib.
- tension larger than in μ-only assumption!
- LFU part sensitive to non-local form factors
- accurate interpretation requires accurate predictions of non-local form factors

parametrize non-local effects [Bobeth et al. 1707.07305; Gubernari et al. 2011.09813]

- ► predict non-local form factors in timelike region
- extrapolate to spacelike region
- ► account for experimental measurements of hadronic decays
- ► global fit based on recent parametrization in prep.

- ► LFU observables: th. very clean; e.m. radiative contributions seem under control
- ▶ confirmation seems to require measurements independent of LHCb (→ Belle (II), ATLAS, CMS)

- overwhelming number of measurements for other observables, in a variety of q² and across LHC experiments and BaBar/Belle
- \blacktriangleright *B* & angular observables require further th. developments
 - theory uncertainties currently limiting factor in fit significances!

$b \to c\overline{u}\{d,s\}$

- \blacktriangleright weak hadronic *B* decays notoriously difficult to predict
- ▶ exception: $\overline{B}^0 \to D^+ K^-$ and $\overline{B}_s \to D_s^+ \pi^-$ [Beneke et al. hep-ph/0006124]
 - four different quark flavours make this manageable (colour-allowed tree decay)
 - ▶ $\overline{B}_{(s)} \rightarrow D_{(s)}$ form factors from lattice QCD at high precision
 - \blacktriangleright in the SM no $\Lambda_{
 m had}/m_b$ absent; corrections start at $\Lambda_{
 m had}^2/m_b^2$
- ► ratio of \mathcal{B} s is sensitive to f_s/f_d : ratio of B_s production over B^0 production
 - ► important input for measurements of $\overline{B}_s \to \mu^+ \mu^-$, which enters global $b \to s\mu^+\mu^-$ fits

- ► ratios of B with identical flavour quantum numbers agree well with measurements
- \blacktriangleright however: absolute ${\cal B}$ show tensions in excess of 4σ

[Bordone et al. 2007.10338; Cai et al. 2103.04138]

- genuine puzzle; all explanations unlikely!
 - measurements biased toward smaller results by $\sim -30\%$
 - color- and doubly power-suppressed corrections cause $\sim -20\%$ shift at amplitude level
 - $\sim -20\%$ modification of four-quark four-flavour tree-level operators in the WET

Conclusion

Summary

- ▶ longstanding $b \rightarrow s\mu^+\mu^-$ anomalies make us **#cautiouslyexcited**
 - ► significances of the $b \rightarrow s\mu^+\mu^-$ anomalies have been increasing with growing data sets
 - ► LFU observables are limited by data set
 - ► non-LFU observables are limited by theory
 - ► non-local form factors single-largest syst. th. uncertainty
- $b \to c \tau^- \overline{\nu}$ anomalies seem stable
 - ► recent lattice QCD analyses (HPQCD, FNAL/MILC) pave road toward high-precision theory-only predictions for $\overline{B} \to D^* \tau^- \overline{\nu}$
 - looking forward to complementary measurements by LHC experiments and Belle II
- ▶ interesting puzzle in hadronic $b \rightarrow c\overline{u}\{d, s\}$ decays