Description
Five minute 'gong show' presentations, for speed
String compactification can give rise to a large spectrum of pseudo-scalar, axion like particles (ALPs). These ALPs will generally have different masses and so, akin to neutrinos, may oscillate among their flavour states. By considering the large distance scales present in astrophysical scenarios, the phenomenological implications of this behaviour can be investigated. The excessive...
Reconstructing the spectrum of QCD in the non-relativistic regime involves the inversion of a Laplace transform. For noisy lattice data, this process is numerically unstable and requires treatment to avoid the emergence of infinitely many spectra. One such treatment is the Backus-Gilbert method, originally applied to seismic wave data, now deployed in the reconstruction of heavy bottomonium...
Atom interferometry is an exciting new technology employing quantum sensors to make precision measurements in key tests of fundamental physics. Upcoming terrestrial long-baseline experiments such as AION and MAGIS will access new parameter spaces in searches for dark matter and gravitational waves, including sensitivity to the mid-band frequency range between LIGO and LISA. The talk will give...
General relativity (GR) exists in different formulations. They are equivalent in pure gravity but generically lead to distinct predictions once matter is included. After a brief overview of various versions of GR, we focus on metric-affine gravity, which avoids any assumption about the vanishing of curvature, torsion, or nonmetricity. We use it to construct an action of a scalar field coupled...
Vortices in quantum fluids have discrete charges associated with their circulations. Higher charged quantum vortices have dynamical instabilities which arise from superradiant bound states inside the vortex core, resulting in vortex splitting. Remarkably, the rotational superradiance we expect to see around rotating black holes has the same physics behind it, allowing us to explore the analogy...