Oct 2022 - Sept 2023

Luca Nutricati




Title: A Genetic Quantum Annealing Algorithm


A genetic algorithm (GA) is a search-based optimization technique based on the principles of Genetics and Natural Selection. In this talk I present an algorithm which enhances the classical GA with input from quantum annealers. As in a classical GA, the algorithm works by breeding a population of possible solutions based on their fitness. However, the population of individuals is defined by the continuous couplings on the quantum annealer, which then give rise via quantum annealing to the set of corresponding phenotypes that represent attempted solutions. This introduces a form of directed mutation into the algorithm that can enhance its performance in various ways. Two crucial enhancements come from the continuous couplings having strengths that are inherited from the fitness of the parents (so-called nepotism) and from the annealer couplings allowing the entire population to be influenced by the fittest individuals (so-called quantum-polyandry). We find our algorithm to be significantly more powerful on several simple problems than a classical GA.


Zoom Meeting ID: 948 7183 3595

Slides are attached below, for version with animations please contact the speaker or organiser.