### Conveners

#### Parallel Session 1: Phenomenology

- Ryan Moodie (Durham University)

#### Parallel Session 1: Quantum gravity 1

- Connor Armstrong (Durham University)

In this talk, we take inspiration from studies of using SU(N|N) to construct a manifestly gauge invariant renormalisation procedure and attempt to apply this to gravity, preserving diffeomorphism invariance and incorporating allowing us to fit gravity into the renormalisation group (a rather well-known problem in physics). This means introducing a supermanifold and attempting to find the...

As new physics continues to evade detection at the LHC, proposals have been made for future colliders with the aim of extending the mass reach and improving sensitivity to physics beyond the standard model. The scalar leptoquark provides a particularly interesting new physics candidate. At tree-level, leptoquark-mediated transitions may account for the hints at lepton flavour universality...

In this talk we review current research into a novel approach to creating a perturbatively renormalizable theory of quantum gravity. This is based on a treatment of Einstein's GR under the exact renormalization group leading to the discovery of operators with negative scaling dimension which resolve the issue of irrelevant operators in interacting gravity. The restriction of these operators to...

We consider a simple renormalisable and gauge-invariant model in which a massive new Z′ boson has couplings only to the electron and muon and their associated neutrinos, arising from mixing with a heavy vector-like fourth family of leptons. Within this model, we discuss the contributions to the electron and muon anomalous magnetic moments from Z′ exchange, subject to the constraints from μ→eγ...

The marriage of quantum theory and gravity is a notoriously difficult problem. While the most popular approach is string theory, it is by no means the only game in town. In this talk I will give a bird's eye view on a selection of other approaches to quantum gravity.