Speaker
Description
The $B_3-L_2$ $Z^\prime$ model may explain some gross features of the fermion mass spectrum as well as $b\rightarrow s \ell \ell$ anomalies. A TeV-scale physical scalar field associated with gauged $U(1)_{B_3-L_2}$ spontaneous symmetry breaking, the flavon field $\vartheta$, affects Higgs phenomenology via mixing. In this talk, I will discuss the collider phenomenology of the flavon field. Higgs data are used to place bounds upon parameter space. I then examine "flavonstrahlung" (${Z^\prime}^\ast \rightarrow Z^\prime \vartheta$ production) at colliders as a means to directly produce and discover flavon particles, providing direct empirical evidence tying it to $U(1)_{B_3-L_2}$ symmetry breaking. A 100 TeV FCC-hh or a 10 TeV muon collider would have high sensitivity to flavonstrahlung, whereas the HL-LHC can observe it only if the flavon charge is larger than unity.
Type of presentation | 20 minute talk |
---|---|
Would you be interested in receiving feedback on your presentation? | Yes |
Are you happy for your talk to be recorded? | Yes |
Please select the most relevant category | Beyond the Standard Model |