The quantum supremacy experiment announced last year aimed at providing the first practical demonstration of a quantum computer performing a task that is out of reach for classical computers at that date. Behind this demonstration is the problem of random circuit sampling, i.e., a task that (1) shows a separation in the amount of computing resources needed to be carried out by the quantum computer and its classical counterpart and (2) whose output can be verified. Classical simulations of the quantum computer have a dual role: on the one hand they serve as a competitor for the quantum computer to beat, while on the other hand they are an essential tool to verify that the quantum hardware is operating as expected. In this talk I will first give a broad overview of the experiment and the task of random circuit sampling; I will then focus on my fractional contribution to the simulation side of this large effort. Finally, I will briefly talk about how this demonstration might be a stepping stone towards useful applications in the near term, as well as convey the idea that the quantum supremacy frontier is not a fixed target but rather one that moves with classical hardware and algorithmic improvements.
Video of the talk:
https://durham.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?tid=045da004-6023-4d94-86c7-ac240105d7ed